II. Categories and Functors

In Chapter I we discussed various algebraic structures (rings, abelian
groups, modules) and their appropriate transformations (homomor-
phisms). We also saw how certain constructions (for example, the forma-
tion of Hom 4(A4, B) for given A-modules A, B) produced new structures
out of given structures. Over and above this we introduced certain
“universal” constructions (direct sum, direct product) and suggested
that they constituted special cases of a general, and important, procedure.
Our objective in this chapter is to establish the appropriate mathematical
language for the general description of mathematical systems and of
mappings of systems, insofar as that language is applicable to homo-
logical algebra.

The language of categories and functors was first introduced by
Eilenberg and MacLane [13] to provide a precise description of the
processes involved in algebraic topology. Since then an independent
mathematical theory has grown up around the basic concepts of the
language and today the development, elaboration and application of this
theory constitute an extremely active area of mathematical research. It is
not our intention to give a treatment of this developing theory; the reader
who wishes to pursue the topic of categorical algebra is referred to the
texts [6, 18, 35, 37—39] for further reading. Indeed, the reader familiar
with the elements of categorical algebra may use this chapter simply as
a source of relevant facts, terminology and notation.

1. Categories

To define a category € we must give three pieces of data:

(1) a class of objects A4, B, C. ...,

(2) to each pair of objects 4, B of €. a set €(A. B) of morphisms from
Ato B,

(3) to each triple of objects 4, B, C of €, a law of composition

G(4, B) x €(B, O)—€(4, C).

Before giving the axioms which a category must satisfy we introduce
some auxiliary notation: this should also serve to relate our terminology
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and notation with ideas which are already very familiar. If /e €(4, B)
we may think of the morphism f as a generalized “function™ from A4 to

B and write
f:A—B or ALB;

we call f a morphism from the domain A to the codomain (or range) B.
The set €(A, B) x €(B, C) consists, of course, of pairs ( f, g) where f: A— B,
g : B— C and we will write the composition of fandgasg f or,simply,gf.
The rationale for this notation (see the Introduction) lies in the fact that
if A, B, C are sets and f, g are functions then the composite function from
A to C is the function h given by

h@=g(f(@), aed.

Thus if the function symbol is written to the lefi of the argument
symbol one is naturally led to write h= fg. (Of course it will turn out
that sets, functions and function-composition do constitute a category.)

We are now ready to state the axioms. The first is really more of
a convention, the latter two being much more substantial.

A 1: Thesets €(A,, B,), €(A4,, B,) are disjoint unless A, = A,, B, =B,.
A2: Given f:A—B, g:B—C, h: C— D, then
hgf)=(hg)f  (Associative law of composition).

A 3: To each object A there is a morphism 1,: A— A such that, for
any f: A—B, g: C— A,

fly=f, 1l,g=g (Existence of identities).

It is easy to see that the morphism [, is uniquely determined by
Axiom A 3. We call 1, the identity morphism of A, and we will often
suppress the suffix 4, writing simply

fl=f, lg=g.

As remarked, and readily verified, the category € of sets, functions and
function-composition satisfies the axioms. We often refer to the category
of sets &; indeed, more generally, in describing a category we omit
reference to the law of composition when the morphisms are functions
and composition is ordinary function-composition (or when, for some
other reason, the law of composition is evident), and we even omit
reference to the nature of the morphisms if the context, or custom, makes
their nature obvious.

A word is necessary about the significance of Axiom A 1. Let us
consider this axiom in &. It is standard practice today to distinguish
two functions if their domains are distinct, even if they take the same
values whenever they are both defined. Thus the sine function sin : R— IR
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is distinguished from its extension sin:C—C to the complex field.
However, the two functions

sin:R—R, sin:R—[—1.1]

would normally be regarded as the same function, although we have
assigned to them different codomains. However we will see that it is useful
— indeed, essential — in homological algebra to distinguish morphisms
unless their (explicitly specified) domains and codomains coincide.

It is also crucial in topology. Suppose f,: X— Y|, f,: X— Y, are two
continuous functions which in fact take the same values, i.e., f;(x) = f,(x),
x € X. Then it may well happen that one of those functions is contractible
whereas the other is not. Take, as an example, X = S, the unit circle in
R?, f, the embedding of X in IR? and f, the embedding of X in IR2—(0).
Then f; is contractible, while f, is not, so that certainly f, and f, should
be distinguished.

Notice also that the composition g f is only defined if the codomain
of f coincides with the domain of g.

We say that a morphism f: A— B in € is isomorphic (or invertible)
if there exists a morphism g: B— A in € such that

af=1,, fg=1;.

It is plain that g is then itself invertible and is uniquely determined by f;
we write g = f ~!, so that

S~ t=1.

It is also plain that the composite of two invertible morphisms is again
invertible and thus the relation

A=B if there exists an invertible f:A—B

(A is isomorphic to B) is an equivalence relation on the objects of the
category €. This relation has special names in different categories (one-
one correspondence of sets, isomorphism of groups, homeomorphism of
spaces), but it is important to observe that it is a categorical concept.

We now list several examples of categories.

(a) The category € of sets and functions;

(b) the category T of topological spaces and continuous functions;

(c) the category ® of groups and homomorphisms;

(d) the category b of abelian groups and homomorphisms;

(e) the category By of vectorspaces over the field F and linear trans-
formations;

(f) the category ®, of topological groups and continuous homo-
morphisms;

(2) the category R of rings and ring-homomorphisms;
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(h) the category R, of rings-with-unity-element and ring-homo-
morphisms preserving unity-element;

(i) the category 9, of left A-modules, where A is an object of R,
and module-homomorphisms;

(j) the category 9N, of right A-modules.

Plainly the list could be continued indefinitely. Plainly also each
category carries its appropriate notion of invertible morphisms and iso-
morphic objects. In all the examples given the morphisms are structure-
preserving functions; however, it is important to emphasize that the
morphisms of a category need not be functions, even when the objects
of the category are sets perhaps with additional structure. To give one
example, consider the category I, of spaces and homotopy classes of
continuous functions. Since the homotopy class of a composite function
depends only on the homotopy classes of its factors it is evident that I,
is a category - but the morphisms are not themselves functions. Other
examples will be found in Exercises 1.1, 1.2,

Returning to our list of examples, we remark that in examples c, d,
e, f, g.1,] the category € in question possesses an object 0 with the property
that, for any object X in @, the sets €(X.0) and €(0, X) both consist of
precisely one element.

Thus in & and 21b we may take for 0 any one-element group. It is
easy to prove that. if € possesses such an object 0, called a zero object,
then any two such objects are isomorphic and €(X, Y) then possesses
a distinguished morphism,

X—0—-Y,

called the zero morphism and written Oy y. For any [ W—X,g: Y—Z
in € we have

Oxyf/=0wy, ¢0xy=0x;.

As with the identity morphism, so with the zero morphism 0y, we will
usually suppress the indices and simply write 0. If € possesses zero objects
it is called a category with zero objects.

If we turn to example (2) of the category € then we notice that, given
any set X, E(#, X) consists of just one element (where @ is the empty set)
and S(X, (p)) consists of just one element (where (p) is a one-element set).
Thus in S there is an initial object @ and a terminal (or coinitial)
object (p), but no zero object. The reader should have no difficulty in
providing precise definitions of initial and terminal objects in a cate-
gory €, and will readily prove that all initial objects in a category € are
isomorphic and so, too, are all terminal objects.

The final notion we introduce in this section is that of a subcategory €,
of a given category €. The reader will readily provide the explicit defini-
tion; of particular importance among the subcategories of € are the full
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subcategories, that is, those subcategories €, of € such that
C(A. BY=C(A.B)

for any objects 4, B of €,. For example, 2[b is a full subcategory of ®,
but R, is a subcategory of ‘R which is not full.

Exercises:

1.1. Show how to represent an ordered set as a category. (Hint: Regard the
elements a, b, ... of the set as objects in the category, and the instances a<b
of the ordering relation as morphisms a—b.) Express in categorical language
the fact that the ordered set is directed [16]. Show that a subset of an ordered
set, with its natural ordering, is a full subcategory.

1.2. Show how to represent a group as a category with a single object, all mor-
phisms being invertible. Show that a subcategory is then precisely a subgroup.
When is the subcategory full?

1.3. Show that the category of groups has a generator. (A generator U of a category
@ is an object such that if f,g: X—Y in €, f & ¢, then there exists u: U— X
with fu+gu.)

1.4. Show that, in the category of groups. there is a one-one correspondence between
elements of G and morphisms Z—G.

1.5. Carry out exercises analogous to Exercises 1.3, 1.4 for the category of sets,
the category of spaces, the category of pointed spaces (1.e. each space has
a base-point and morphisms are to preserve base-points, see [21]).

1.6. Set out in detail the natural definition of the Cartesian product €, x €, of two
categories €, €,.

1.7. Show that if a category has a zero object, then every initial object, and every
terminal object, is isomorphic to that zero object. Deduce that the category
of sets has no zero object.

2. Functors

Within a category € we have the morphism sets €(X, Y) which serve
to establish connections between different objects of the category. Now
the language of categories has been developed to delineate the various
areas of mathematical theory; thus it is natural that we should wish to
be able to describe connections between different categories. We now
formulate the notion of a transformation from one category to another.
Such a transformation is called a functor; thus, precisely, a functor
F : €— Disarule which associates with every object X of € an object FX
of © and withevery morphism fin €(X, Y)amorphism F f in D(F X, FY),
subject to the rules

F(fg)=(Ff)(Fg), F(l)=1g,. (2.1)
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The reader should be reminded, in studying (2.1), of rules governing
homomorphisms of familiar algebraic systems. He should also observe
that we have evidently the notion of an identity functor and of the com-
position of functors. Composition is associative and we may thus pass
to invertible functors and isomorphic categories.

We now list several examples of functors. The reader will need to
establish the necessary facts and complete the descriptions of the functors.

(a) The embedding of a subcategory €, in a category € is a functor.

(b) Let G be any group and let G'G’ be its abelianized group, i.c. the
quotient of G by its commutator subgroup G'. Then G+— G/G’ induces
the abelianizing functor Abel: ®— (. Of course this functor may also
be regarded as a functor (H—2b. This example enables us to exhibit,
once more, the importance of being precise about specifying the codomain
of a morphism. Consider the groups G = Cj. the cyclic group of order 3
generated by ¢, say, and H =S5, the symmetric group on three symbols.
Let ¢ : G—H be given by ¢(t) =(123), the cyclic permutation. Let H,
be the subgroup of H generated by (123) and let ¢,: G— H, be given
by @o(t) =(123). It may well appear pedantic to distinguish ¢, from ¢
but we justify the distinction when we apply the abelianizing functor
Abel: 66— G. For plainly Abel(G)=G, Abel(H,)=H,, Abel(¢p,) = @,,
which is an isomorphism. On the other hand, H, is the commutator
subgroup of H, so that Abel(H) = H/H, and so Abel(¢) =0, the constant
homomorphism (or zero morphism) G— H,/H,, (= C,). Thus Abel(¢p) and
Abel(¢p,) are utterly different!

(c) Let S be a set and let F(S) be the free abelian group on § as basis.
This construction yields the free functor F : ©—91b. Similarly there are
free functors €— 6, €— B, S—-M),, S>>, etc.

(d) Underlying every topological space there is a sct. Thus we get an
underlying functor U :T— . Similarly there are underlying functors
from all the examples (a) to (j) of categories (in Section 1) to &. There
are also underlying functors 9}, — b, M, — Ab, R—ADb, etc., in which
some structure is “forgotten” or “thrown away”.

(e) The fundamental group may be regarded as a functor m: T°— (H,
where T° is the category of spaces-with-base-point (see [217). It may
also be regarded as a functor 7 : Ty — ®, where the subscript h indicates
that the morphisms are to be regarded as (based) homotopy classes of
(based) continuous functions. Indeed there is an evident classifying
functor Q : T°— 3P and then =« factors as = =7Q.

(f) Similarly the (singular) homology groups are functors T—2b
(or T,—Ab).

(g) We saw in Chapter [ how the set M, (A4, B) = Hom (4, B) may be
given the structure of an abelian group. If we hold A fixed and define
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DA, —): M, —ADb by
Wy(A, —) (B)=M,(4, B),

then 9M'(A4, —) is a functor. More generally, for any category € and
object A of €, €(4, —) is a functor from € to €. We say that this functor
1s represented by A. It is an important question whether a given functor
(usually to &) may be represented in this sense by an object of the
category.

In viewing the last example the reader will have noted an asym-
metry. We have recognized I, (4, —) as a functor MM, —Ab, but if
we look at the corresponding construct Wt,(—, B): M, —ADb, we see
that this 1s not a functor. For, writing F for 9',(—, B), then F sends
f:A;— A, to Ff: FA,—FA,. This “reversal of arrows” turns up fre-
quently in applications of categorical ideas and we now formalize the
description.

Given any category €. we may form a new category €°PP, the category
opposite to €. The objects of €°PP are precisely those of €, but

EPP(X, Y)=C(Y, X). 2.2)

Then the composition in E°PP is simply that which follows naturally
from (2.2) and the law of composition in €. It is trivial to verify that €°P?
is a category with the same identity morphisms as €, and that if € has
zero objects, then the same objects are zero objects of €°PP. Moreover,

(GorryerPP = (2.3)

Of course the construction of €°°? is merely a formal device. However
it does enable us to express precisely the contravariant nature of 9, (—, B)
or, more generally, €(—, B), and to formulate the concept of categorical
duality (see Section 3).

Thus, given two categories € and T a contravariant functor from €
to D is a functor from €°PP to D. The reader should note that the effective
difference between a functor as originally defined (often referred to as
a covariant functor) and a contravariant functor is that, for a contra-
variant functor F from € to D, F maps €(X, Y) to D(FY, FX) and
(compare (2.1)) F(fg)=F(g9) F(f). We give the following examples of
contravariant functors.

(a) €(—. B), for B an object in €. is a contravariant functor from €
to &. Similarly, 9',(—, B), M",(—, B) are contravariant functors from
L. 9N, respectively to b, We say that these functors are represented
by B.

(b) The (singular) cohomology groups are contravariant functors
T —AUD (or T,—AD).

(c) Let A be an object of W', and let G be an abelian group. We saw
in Section [. 8 how to give Homy(A, G) the structure of a left A-module.
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Homy,(—, G) thus appears as a contravariant functor from 9% to i,
Further examples will appear as exercises.

Finally we make the following definitions. Recall from Section 1 the
notion of a full subcategory. Consistent with that definition, we now
define a functor F:E€—D as full if F maps €(A. B) onto D(FA. FB) for
all objects A, B in @, and as faithful if F maps €(A4, B) injectively to
D(FA, FB). Finally F is a full embedding if F is full and faithful and
one-to-one on objects. Notice that then F(C) is a full subcategory of ©
(in general. F(€) is not a category at all).

Exercises:

2.1. Regarding ordered sets as categories, identify functors from ordered sets to
ordered sets, and to an arbitrary category €. Also interpret the opposite
category. (See Exercise 1.1.)

2.2. Regarding groups as categories, identify functors from groups to groups. Show

that the opposite of a group is isomorphic to the group.

2.3. Show that the center is not a functor — @ in any obvious way. Let ®,,; be
the subcategory of ® in which the morphisms are the surjections. Show that
the center is a functor G,,;— 6. Is it a functor 6 ,;— 6,7

2.4. Give examples of underlying functors.

2.5. Show that the composite of two functors is again a functor. (Discuss both
covariant and contravariant functors.)

2.6. Let @ associate with each commutative unitary ring R the set of its prime
ideals. Show that & is a contravariant functor from the category of commu-
tative unitary rings to the category of sets. Assign to the set of prime ideals
of R the topology in which a base of neighborhoods is given by the sets of
prime ideals containing a given ideal J, as J runs through the ideals of R.
Show that @ is then a contravariant functor to I.

2.7. Let F: ¢, x€,—D be a functor from the Cartesian product €, x €, to the
category D (see Exercise 1.6). F is then also called a bifunctor from (€,, €,)
to D. Show that, for each C, € €,, F determines a functor F¢ :€,—D and,
similarly, for each C, € €,, a functor F.,: €, —D, such that, if ¢, : C,—C},
@,: C,—C,, then the diagram

H

FC, G- LS, 65
Fe,(g2) jFC.(W')) (*)

Fio C-—208, pros %)

commutes. What is the diagonal of this diagram? Show conversely that if we
have functors F. :€,—D, F.,:¢,—D, indexed by the objects of €, €,
respectively, such that F. (C,) = F,(C,) and (x) commutes, then these families
of functors determine a bifunctor G : €, x €,—Dsuchthat G, = F¢,G¢,= Fe,.

2.8. Show that €(—, —):E°?? x € — & is a bifunctor.
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3. Duality

Our object in this section is to explain informally the duality principle
in category theory. We first give an example taken from Section I. 6.
We saw there that the injective homomorphisms in 9%, are precisely the
monomorphisms, i.e. those morphisms p such that for all «. f§

uo=pf=>a=4. (3.1)

(The reader familiar with ring theory will notice the formal similarity
with right-regularity.) Similarly the surjecrive homomorphisms in 9, are
precisely the epimorphisms in 9 ,, i.e. those morphisms ¢ such that for
all o,

we=Pe=oa=/. (3.2

(The reader will notice that the corresponding concept in ring theory is
left-regularity.) Now given any category, we define a monomorphism pu
by(3.1)and an epimorphism &by (3.2). It is then plain that, if ¢ isa morphism
in €, then ¢ is a monomorphism in € if and only if it is an epimorphism
as a morphism of €°PP, It then follows from (2.3) that a statement about
epimorphisms and monomorphisms which is true in any category must
remain true if the prefixes “epi-” and “mono-" are interchanged and
“arrows are reversed”. Let us take a trivial example. An easy argument
establishes the fact that if @y is monomorphic then v is monomorphic.
We may thus apply the “duality principle” to infer immediately that if
pe is epimorphic then v is epimorphic. Indeed, the two italicized state-
ments are logically equivalent — either stated for € implies the other for
@°rP Tt 1s superfluous to write down a proof of the second, once the
first has been proved.

It is very likely that the reader will come better to appreciate the
duality principle after meeting several examples of its applications.
Nevertheless we will give a general statement of the principle; this state-
ment will not be sufficiently formal to satisfy the canons of mathematical
logic but will, we hope, be intelligible and helpful.

Let us consider a concept % (like monomorphism) which is mean-
ingful in any category. Since the objects and morphisms of €""" are those
of €, it makes sense to apply the concept ¥ to €°PP and then to interpret
the resulting statement in Q. This procedure leads to a new concept ¢°°?
which is related to € by the rule (writing €(€) for the concept € applied
to the category €)

%°PP(E) = #(€°PP) for any category € .
Thus if % is the concept of monomorphism, €°** is the concept of epi-

morphism (compare (3.1), (3.2)). We may also say that °" is obtained
from % by “reversing arrows”. This “arrow-reversing” procedure may
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thus be applied to definitions, axioms, statements, theorems ..., and hence
also to proofs. Thus if one shows that a certain theorem 7 holds in any
category € satisfying certain additional axioms A, B, ..., then theorem
7 °PF holds in any category € satisfying axioms A°®, B°*, ... . In par-
ticular if 7 holds in any category so does .7 °PP,

This automatic process of dualizing is clearly extremely useful and
convenient and will be much used in the sequel. However, the reader
should be clear about the limitations in the scope of the duality principle.
Suppose given a statement .7, about a particular category €. involving
concepts €, ..., o, expressed in terms of the objects and morphisms
of €,. For example, €, may be the category of groups and .%, may be the
statement “A finite group of odd order is solvable”. Now it may be pos-
sible to formulate a statement % about a general category €, and concepts
b15-- B 80 that F(€), %, (C,),.... % (C,) are equivalent to ¥, %y 1,..., %
respectively. We may then dualize &,%,...,%, and interpret the
resulting statement in the category @,. Informally we may describe
S OPP(Q) as the dual of %, but two warnings are in order:

(i) The passage from %, to .% is not single-valued; that is, there
may well be several statements about a general category which specialize
to the given statement .%;, about the category €,. Likewise of course, the
concepts %, %, ..., ¥, may generalize in many different ways.

(ii) Even if %, is provable in €,, #°"P(€,) may well be false in €.

However, if ¢ is provable, then this constitutes a proof of %, and of
SOPP(E,). (This does not prevent #°PP(€ ) from being vacuous, of course;
we cannot guarantee that the dual in this informal sense is always
interesting!)

As an example, consider the statement %, “Every A-module is the
quotient of a projective module”. This is a statement about the category
€, =M. Now there is a perfectly good concept of a projective object
in any category €, based on the notion of an epimorphism. Thus (see
Section 10) a projective object is an object P with the property that,
given ¢ and e, p

az @
A——B
with ¢ epimorphic, there exists 0 such that £¢0 = ¢. We may formulate the
statement ., for any category €. whieh states that, given any object X
in € there is an epimorphism &: P— X with P projective. Then .#(€,)
is our original statement .%,. We may now formulate .#°°°" which asserts
that. given any object X in € there is a monomorphism u: X —1I with I
injective (here “injective” is the evident concept dual to “projective”; the

reader may easily formulate it explicitly). Then &#°PP(E,,) is the statement
“Every A-module may be embedded in an injective module”. Now it



50 I1. Categories and Functors

happens (as we proved in Chapter I) that both %(€,) and %°P?(€,) are
true, but we cannot infer one from the other. For the right to do so would
depend on our having a proof of &% — and, in general, ¥ is false.

We have said that, if -/ is provable then, of course, & (€,) and &7 °PP(E)
are deducible. Clearly, though, this is usually too stringent a criterion;
in other words, this principle does not permit us to deduce any but the
most superficial of propositions about €, since it requires some state-
ment to be true in any category. However, as suggested earlier, there is
a refinement of the principle that does lead to practical results. Suppose
we confine attention to categories satisfying certain conditions Q. Sup-
pose moreover that these conditions are self-dual in the sense that, if any
category € satisfies Q, so does €°PP, and suppose further that €, satisfies
conditions Q. Suppose ¥ is a statement meaningful for any category
satisfying 0 and suppose that % may be proved. Then we may infer
both % (€,) and #°P?(E,). This principle indicates the utility of proving %
for the entire class of categories satisfying Q instead of merely for €.
We will meet this situation in Section 9 when we come to discuss abelian
categories.

Exercises:

3.1. Show that “epimorphic” means “surjective” and that “monomorphic” means
“injective”
(i) in &, (i) in I, (i) in G.

3.2. Show that the inclusion Z € @) is an epimorphism in the category of integral
domains. Generalize to other epimorphic non-surjections in this category.

3.3. Consider the underlying functor U:T—&. Show that j: X;— X in T is
a homeomorphism of X, into X if and only if it is a monomorphism and, for
any f: Y—X in I, a factorization U(j)g,=U(f) in S implies jfo=fin T
with g, = U(f,)- Dualize this categorical property of j and obtain a topological
characterization of the dual categorical property.

3.4. Define the kernel of a morphism ¢ : A— Bin a category with zero morphisms €
as a morphism p: K— A such that (i) u =0, (ii) if @y =0, then yp = uy’ and
y’ is unique. Identify the kernel, so defined, in 2(b and (. Dualize to obtain
a definition of cokernel in €. Identify the cokernel in 2b and ®. Let G° be
the category of sets with base points. Identify kernels and cokernels in &°,

3.5. Generalize the definitions of kernel (and cokernel) above to equalizers (and
coequalizers) of two morphisms ¢,, @, : A—B. A morphism g : E— A4 is the
equalizer of @, @, If () @, p =@, u, (i) if @, =@, then p=py and ' is
unique. Exhibit the kernel as an equalizer. Dualize.

4. Natural Transformations

We come now to the idea which deserves to be considered the original
source of category theory, since it was in the (successful!) attempt to
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make precise the notion of a natural transformation that Eilenberg and
MacLane were led to introduce the language of categories and functors
(see [13]).

Let F, G be two functors from the category € to the category D. Then
a natural transformation t from F to G is a rule assigning to each object X
in € a morphism ty:FX—GX in D such that, for any morphism
f: X—Y inC, the diagram

FX-%,GX

FfJ j Gf
FY-2GY

commutes. If ty is isomorphic for each X then t is called a natural equiv-
alence and we write F~ G. It is plain that then t ': G~F, where t !
is given by (t )y =(ty) *. If t: F—>G, u: G— H are natural transforma-
tions then we may form the composition ut: F—H, given by (ut)y
=(uy) (tx); and the composition of natural transformations is plainly
associative. Let F: €—D, G: D—C be functors such that GF ~ I:E —(,
FG~1:D—D, where I stands for the identity functor in any category.
We then say that € and D are equivalent categories. Of course, isomorphic
categories are equivalent, but equivalent categories need not be iso-
morphic (see Exercise 4.1). We now give some examples of natural trans-
formations; we draw particular attention to the first example which
refers to the first explicitly observed example of a natural transformation.

(a) Let VV be a vector space over the field F. let V'* be the dual vector
space and V** the double dual. There is a linear map 1, : V— V** given
by v— 1 where #(¢) = @(v). ve V. ¢ € V*, F€ V**. The reader will verify
that 1 is a natural transformation from the identity functor I: 8,— B,
to the double dual functor **: B,— B,. Now let Bf be the full sub-
category of By consisting of finite-dimensional vector spaces. It is then,
of course, a basic theorem of linear algebra that 1, restricted to B, is
a natural equivalence. (More accurately, the classical theorem says that 1,
is an isomorphism for each V in Bf.) The proof proceeds by observing
that V= V*if V is finite-dimensional. However, this last isomorphism
is not natural — to define it one needs to choose a basis for ¥ and then
to associate with this basis the dual basis of V'*. That is, the isomorphism
between V and V* depends on the choice of basis and lacks the canonical
nature of the isomorphism i, between ¥V and V**.

(b) Let G be a group and let G/G’ be its commutator factor group.
There is an evident surjection kg: G—G/G' and k is a natural trans-
formation from the identity functor &—® to the abelianizing functor
Abel: G— 6.
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(c) Let A be an abelian group and let A, be the free abelian group
on the set A as basis. There is an evident surjection 7, : A,— A, which
maps the basis elements of A, identically, and 7 is a natural transforma-
tion from FU to I, where U:Ab— & is the underlying functor and
F: @—Ub is the free functor.

(d) The Hurewicz homomorphism from homotopy groups to homol-
ogy groups (see e.g. [21]) may be interpreted as a natural transformation
of functors T°—Ab (or T)—ADb).

We continue with the following important remark. Given two cate-
gories €, D, the reader is certainly tempted to regard the functors € — T
as the objects of a new category with the natural transformations as
morphisms. The one difficulty about this point of view is that it is not
clear from a foundational viewpoint that the natural transformations
of functors €— D form a set. This objection may be circumvented by
adopting a set-theoretical foundation different from ours (see [32]) or
simply by insisting that the collection of objects of € form a set; such
a category € is called a small category. Thus if € is small we may speak
of the category of functors (or functor category) from € to D which we
denote by T or [€, D]. In keeping with this last notation we will denote
the collection of natural transformations from the functor F to the
functor G by [F, G].

We illustrate the notion of the category of functors with the follow-
ing example. Let € be the category with two objects and identity mor-
phisms only. A functor F: E— D is then simply a pair of objects in D,
and a natural transformation r: F— G is a pair of morphisms in ©. Thus
it is seen that D =[E, D] is the Cartesian product of the category D
with itself, that is the category D x D in the notation of Exercise 1.6.

We close this section with an important proposition. We have seen
that, if A, B are objects of a category €, then (A4, —) is a (covariant)
functor € — & and €(—, B)is a contravariant functor € — . If: B, — B,
let us write 6, for €(4, 6): €(4, B,)—&(A, B,). so that

O (@)=0p, ¢@:A—B,,
and if p: 4,— A, let us write p* for €(p, B): €(4,, B)—€(A4,, B) so that
v e)=9y. ¢:4,—B.

These notational simplifications should help the reader to understand
the proof of the following proposition.

Proposition 4.1. Let t© be a natural transformation from the functor
€(A, —) to the functor F from € to . Then t—1,(1,) sets up a one-one
correspondence between the set [€(A, —), F] of natural transformations
Sfrom €A, —) to F and the set F(A)
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Proof. We show first that 7 is entirely determined by the element
74(1,) € F(A). Let ¢ : A— B and consider the commutative diagram

C(A, A)—2>C(4, B)

FA-—Fe rp

Then t53(¢) = (1) (¢,) (1) = (Fe) (z,) (1,), proving the assertion. The pro-
position is therefore established if we show that, for any k € F 4, the rule

p(@)=(Fp)(k), ¢@eC(A B), (4.1

does define a natural transformation from €(4, —) to F. Let 6: B, — B,
and consider the diagram

€(4, B,)—2-E(4, B,)
FB,—** FB,

We must show that this diagram commutes if 75, 75, are defined as in
(4.1). Now (t3,) 0, () = (t3,) (60) = F(0) (x) = F(0) F() (x)= F(6) 15, (0)
for ¢ : A— B,. Thus the proposition is completely proved. []

By choosing F=¢(A4’, —) we obtain

Corollary 4.2. The set of morphisms €(A', A) and the set of natural
transformations [€(A, —), €(A’, —)] are in one-to-one correspondence. the
correspondence being given by pr—p*, p: A’ — A,

Proof. If © is such a natural transformation, let p=1,(1,), so that
p:A'— A. Then, by (4.1) t is given by

T5(@) = @, (W) = oy =p*(p).

Thus tz=y*. Of course y is uniquely determined by t and every v
does induce a natural transformation €(4, —)—€(A4’, —). Thus the rule
T+—1,4(1,) sets up a one-one correspondence, which we write t—1p,
between the set of natural transformations €(A4, —)—€(4’ —) and the
set €(A", 4). [J

With respect to the correspondence 1+ we easily prove

Proposition 4.3. Let 7:C(4, —)—CE(4,—), 7:C(4", —)—E(4", —).
Then if 1oy, Uy, where p: A'— A, ' : A"— A, we have

T yy .
In particular 1 is a natural equivalence if and only if vy is an isomorphism.
Proof. (¥ 1)3=(tp) (t)) =y*p* =(wy)*. I
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Proposition 4.1 is often called the Yoneda lemma : it has many applica-
tions in algebraic topology and, as we shall see, in homological algebra.

If € is a small category we may formulate the assertion of Corollary 4.2
in an elegant way in the functor category S€. Then A— (4, —) is seen
to be an embedding (called the Yoneda embedding) of €°PP in ©; and
Corollary 4.2 asserts further that it is a full embedding.

Exercises:

4.1. A full subcategory €, of € is said to be a skeleton of € if, given any object A
of €, there exists exactly one object 4, of €, with A,= 4. Show that every
skeleton of € is equivalent to €, and give an example to show that a skeleton
of € need not be isomorphic to €. Are all skeletons of € isomorphic?

4.2. Represent the embedding of the commutator subgroup of G in G as a natural
transformation.

4.3. Let F,G:C—7D,E:B—(, H: D—C be functors, and let ¢t : F— G be a natural
transformation. Show how to define natural transformations tE: FE—GE,
and Ht: HF— HG. and show that H(tE)= (Ht) E. Show that rE and Ht are
natural equivalences if ¢ is a natural equivalence.

4.4. Let € be a category with zero object and kernels. Let f/: A— B in € with kernel
k:K—A. Then f,:€(—,A)—E(—, B) is a natural transformation of contra-
variant functors from € to &,, the category of pointed sets. Show that
Xwker(f,)y is a contravariant functor from € to &, which is represented by
K, and explain the sense in which k_ is the kernel of f,

4.5. Carry out an exercise similar to Exercise 4.4 replacing kernels in € by co-
kernels in €.

4.6. Let 2 be a small category and let Y: A —[A°PP, €] be the Yoneda embedding
Y(A)=A(—, A). Let J:A—B be a functor. Define R: B—[ A" E] on
objects by R(B)=B(J—, B). Show how to extend this definition to yield
a functor R, and give reasonable conditions under which Y=RJ.

4.7. Let I be any set; regard I as a category with identity morphisms only. Describe
@’ What is € if I is a set with 2 elements?

5. Products and Coproducts; Universal Constructions

The reader was introduced in Section 1. 3 to the universal property of the
direct product of modules. We can now state this property for a general
category C.

Definition. Let {X,}, iel, be a family of objects of the category €
indexed by the set I. Then a product (X;p;) of the objects X; is an
object X, together with morphisms p,: X' — X, called projections, with
the universal property: given any object Y and morphisms f;: Y— X,
there exists a unique morphism f={f;}: Y— X with p,f = f.

As we have said, in the category M, of (left) A-modules, we may
take for X the direct product of the modules X; (Section 1. 3). In the



