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Properties for morphisms
We extended the notion of open/closed subschemes to a subfunctor Y → X
in Fun.

Given an element a ∈ X (R) we defined Ya as the fibre product Sp(R)×X Y
of functors which is a subfunctor of Sp(R).

We say that Y → X is open (respectively closed) if Ya is an open
(respectively closed) subscheme of the affine scheme Sp(R) for every
a ∈ X (R) for every ring R.

Recall that Ya → Sp(R) is an open subscheme if there is an ideal I so that
Ya → Sp(R) identifies Ya with Q(R, I), the quasi-affine scheme which is
the scheme-theoretic complement of Sp(R/I) in Sp(R). Recall, that for a
ring T

Q(R, I)(T ) = {f : R → T |f (I)T = T} ⊂ Hom(R,T ) = Sp(R)(T )
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Open covers of a scheme

Given a scheme X , suppose Ui → X is a collection of open subschemes
such that U = tiUi → X is a sheaf-theoretic surjection.

We say that such a collection is a Zariski open cover of X .

Let us clarify what this means in the case of an affine scheme X = Sp(R).

Since each Ui is an open subscheme of Sp(R), there is an ideal Ii in R such
that Ui = Q(R, Ii) is the scheme-theoretic complement of Sp(R/Ii).

Let J be the ideal in R generated by the ideals Ii as i varies.

If the ideal J is proper, then Sp(R/J)→ Sp(R) is an element of
Sp(R)(R/J). However the image of Ii in R/J is {0} for all i . Thus, this
element is not in the image of tiUi .
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Thus
∑

i Ii = J = R and so we can find finitely many ut ∈ Iit , for
t = 1, . . . , k which generate the unit ideal.

For t = 1, . . . , k there are elements ut in R such that Sp(Rut )→
Uit → Sp(R) is a factoring and 〈u1, . . . , uk〉 = R.

In other words, there is a refinement of the cover by the affine open
subschemes Sp(Rut ).
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Sheaf property in terms of open covers

Suppose we are given a Zariski open cover (Ui → X ) as above.

Given a functor F from CRing to Set, and a morphism f : X → F , we
have, by composition, morphism fi : Ui → F .

Recall that Ui ×X Uj represents the intersection of Ui and Uj in X . Thus,
we see that fi and fj restrict to the same element on Ui ×X Uj .

Claim: If F is in Sheaf, then given fi : Ui → F for each i such that fi
and fj restrict to the same morphism on Ui ×X Uj , there is a
unique morphism f : X → F which gives fi on restriction to
Ui .

Let us indicate a proof of this claim.

Kapil Hari Paranjape (IISER Mohali) Sheaves on schemes 8th November 2021 5 / 13



To produce a morphism X → F , we need to show that for each ring R,
there is a natural map X (R)→ F (R).

By the Yoneda Lemma, for any functor G , the set G(R) is identified with
morphisms Sp(R)→ G .

So, given a morphism Sp(R)→ X we need to produce a morphism
Sp(R)→ F .

Let us fix such a morphism Sp(R)→ X .
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We note that (Vi = Ui ×X Sp(R)→ Sp(R)) is an open cover of Sp(R).

As seen above, there is a refinement Sp(Rut )→ Vit → Sp(R), where
u1, . . . , uk generate the unit ideal on R.

By restriction of fi from Ui , we get ft : Sp(Ruit )→ F .

Moreover, ft and fs are the restrictions of fit and fis . Hence, they restrict to
the same element on Sp(Ruit uis ) from Uit ×X Uis .

By the sheaf property of F , we get a morphism Sp(R)→ F as required.
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“Classical” Sheaf Theory

Given a topological space X , we have a category TX whose objects are open
subsets U of X and morphisms iUV : V → U are the natural inclusions of
open subsets in one another as subsets of X .

We see that there is at most one morphism V → U for any pair of objects
in TX .

Moreover, X is an object of TX and there is a unique morphism U → X for
every object of TX .

Given a contravariant functor F from TX to Set and an element a in F (U),
we get an element aV = F (iUV )(a) in F (V ) for every open subset V of U.
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Conversely, given an open cover (Vj) of U and elements aj in F (Vj) for
each j , we can ask for a condition to get an element a of F (U) such that
F (iUVj

)(a) = aj .

Clearly, a necessary condition is that

F (iVj
Vj ∩Vk

)(aj) = F (iVk
Vj ∩Vk

)(ak) in F (Vj ∩ Vk)

If this condition is sufficient for all open covers (Vi) of all open sets U, we
say that F is a sheaf (in the classical sense) on TX .
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The category TX

We now extend this idea to a scheme X .

The category TX is defined as follows:

I The objects of the category TX are open subfunctors iU : U → X .
I The morphisms of the category are morphisms iUV : V → U such that

iU ◦ iUV = iV .

Note that if there is a morphism iUV , then it is uniquely determined by iU
and iV .

We see that this category is similar to the category of open subsets of a
topological space.

In fact, it is not difficult to show that this is the same as the category Tσ(X)
associated to the topological space σ(X ).
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Given F an object of Sheaf, we define, for U → X in TX , the set
F̃ (U) = Mor(U,F ).

By the previous discussion, we see that F̃ is a sheaf in the classical sense on
TX .

Equivalently, we can think of F̃ as a sheaf on Tσ(X).

More generally, a classical sheaf on TX is called a (Zariski) sheaf on X by
abuse of terminology.
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Sheaves with structure
One important example of a sheaf on X is the sheaf O which associates
O(U) to each open set U → X . (Recall that O(U) = Mor(U,A1); so
O = Ã1 with notation as above.)

Sometimes we write this as OX to emphasize that we are thinking of the
sheaf on X .

This is not just a sheaf of sets but a sheaf of rings. In other words, we have
a contravariant functor TX to the category Ring of rings which has the
sheaf property.

Similarly, a sheaf of abelian groups on X is a contravariant functor TX to
the category Ab of abelian groups which has the sheaf property.

A homomorphism M → N of sheaves of abelian groups (or rings) is a
morphism of sheaves for which the set map M(U)→ N(U) is a
homomorphism of abelian groups (respectively rings) for each U → X .
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Given a sheaf M of abelian groups on X , it is not difficult to see that the
association of End(M(U)) to U → X gives a sheaf of rings on X . We
denote this as End(M).

Given a sheaf M of abelian groups and a sheaf R of rings on X , we can ask
for a homomorphism R → End(M) of sheaves of rings.

Given such a homomorphism we say that M is called a sheaf of modules
over the sheaf of rings R.

In the next lecture we will talk about a special class of sheaves of OX
modules.

Kapil Hari Paranjape (IISER Mohali) Sheaves on schemes 8th November 2021 13 / 13


