Sheaves on schemes MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

8th November 2021

Kapil Hari Paranjape (IISER Mohali)

Sheaves on schemes

Properties for morphisms

We extended the notion of open/closed subschemes to a subfunctor $Y \to X$ in **Fun**.

Given an element $a \in X(R)$ we defined Y_a as the fibre product $Sp(R) \times_X Y$ of functors which is a subfunctor of Sp(R).

We say that $Y \to X$ is open (respectively closed) if Y_a is an open (respectively closed) subscheme of the affine scheme Sp(R) for every $a \in X(R)$ for every ring R.

Recall that $Y_a \to \text{Sp}(R)$ is an open subscheme if there is an ideal I so that $Y_a \to \text{Sp}(R)$ identifies Y_a with Q(R, I), the quasi-affine scheme which is the scheme-theoretic complement of Sp(R/I) in Sp(R). Recall, that for a ring T

 $Q(R,I)(T) = \{f : R \to T | f(I)T = T\} \subset \operatorname{Hom}(R,T) = \operatorname{Sp}(R)(T)$

Open covers of a scheme

Given a scheme X, suppose $U_i \to X$ is a collection of open subschemes such that $U = \bigsqcup_i U_i \to X$ is a sheaf-theoretic surjection.

We say that such a collection is a *Zariski open cover* of X.

Let us clarify what this means in the case of an affine scheme X = Sp(R).

Since each U_i is an open subscheme of Sp(R), there is an ideal I_i in R such that $U_i = Q(R, I_i)$ is the scheme-theoretic complement of $Sp(R/I_i)$.

Let J be the ideal in R generated by the ideals I_i as i varies.

If the ideal J is proper, then $\operatorname{Sp}(R/J) \to \operatorname{Sp}(R)$ is an element of $\operatorname{Sp}(R)(R/J)$. However the image of I_i in R/J is $\{0\}$ for all *i*. Thus, this element is *not* in the image of $\sqcup_i U_i$.

Kapil Hari Paranjape (IISER Mohali)

Thus $\sum_{i} I_i = J = R$ and so we can find finitely many $u_t \in I_{i_t}$, for t = 1, ..., k which generate the unit ideal.

For t = 1, ..., k there are elements u_t in R such that $Sp(R_{u_t}) \rightarrow U_{i_t} \rightarrow Sp(R)$ is a factoring and $\langle u_1, ..., u_k \rangle = R$.

In other words, there is a *refinement* of the cover by the affine open subschemes $Sp(R_{u_t})$.

Sheaf property in terms of open covers

Suppose we are given a Zariski open cover $(U_i \rightarrow X)$ as above.

Given a functor *F* from **CRing** to **Set**, and a morphism $f : X \to F$, we have, by composition, morphism $f_i : U_i \to F$.

Recall that $U_i \times_X U_j$ represents the intersection of U_i and U_j in X. Thus, we see that f_i and f_j restrict to the same element on $U_i \times_X U_j$.

Claim: If *F* is in **Sheaf**, then given $f_i : U_i \to F$ for each *i* such that f_i and f_j restrict to the *same* morphism on $U_i \times_X U_j$, there is a *unique* morphism $f : X \to F$ which gives f_i on restriction to U_i .

Let us indicate a proof of this claim.

To produce a morphism $X \to F$, we need to show that for each ring R, there is a natural map $X(R) \to F(R)$.

By the Yoneda Lemma, for any functor G, the set G(R) is identified with morphisms $Sp(R) \rightarrow G$.

So, given a morphism $Sp(R) \to X$ we need to produce a morphism $Sp(R) \to F$.

Let us fix such a morphism $Sp(R) \rightarrow X$.

We note that $(V_i = U_i \times_X \operatorname{Sp}(R) \to \operatorname{Sp}(R))$ is an open cover of $\operatorname{Sp}(R)$.

As seen above, there is a refinement $\operatorname{Sp}(R_{u_t}) \to V_{i_t} \to \operatorname{Sp}(R)$, where u_1, \ldots, u_k generate the unit ideal on R.

By restriction of f_i from U_i , we get $f_t : \text{Sp}(R_{u_{it}}) \to F$.

Moreover, f_t and f_s are the restrictions of f_{i_t} and f_{i_s} . Hence, they restrict to the same element on $\text{Sp}(R_{u_{i_t}u_{i_s}})$ from $U_{i_t} \times_X U_{i_s}$.

By the sheaf property of F, we get a morphism $Sp(R) \rightarrow F$ as required.

"Classical" Sheaf Theory

Given a topological space X, we have a category \mathcal{T}_X whose objects are open subsets U of X and morphisms $i_V^U : V \to U$ are the natural inclusions of open subsets in one another as subsets of X.

We see that there is *at most* one morphism $V \to U$ for any pair of objects in \mathcal{T}_X .

Moreover, X is an object of \mathcal{T}_X and there is a *unique* morphism $U \to X$ for every object of \mathcal{T}_X .

Given a *contravariant* functor F from \mathcal{T}_X to **Set** and an element a in F(U), we get an element $a_V = F(i_V^U)(a)$ in F(V) for every open subset V of U.

Kapil Hari Paranjape (IISER Mohali)

Conversely, given an open cover (V_j) of U and elements a_j in $F(V_j)$ for each j, we can ask for a condition to get an element a of F(U) such that $F(i_{V_j}^U)(a) = a_j$.

Clearly, a necessary condition is that

$$F(i_{V_j \cap V_k}^{V_j})(a_j) = F(i_{V_j \cap V_k}^{V_k})(a_k) \text{ in } F(V_j \cap V_k)$$

If this condition is sufficient for all open covers (V_i) of all open sets U, we say that F is a sheaf (in the classical sense) on \mathcal{T}_X .

Kapil Hari Paranjape (IISER Mohali)

The category \mathcal{T}_X

We now extend this idea to a scheme X.

The category \mathcal{T}_X is defined as follows:

- The objects of the category \mathcal{T}_X are open subfunctors $i_U: U \to X$.
- ► The morphisms of the category are morphisms $i_V^U : V \to U$ such that $i_U \circ i_V^U = i_V$.

Note that *if* there is a morphism i_V^U , then it is uniquely determined by i_U and i_V .

We see that this category is *similar* to the category of open subsets of a topological space.

In fact, it is not difficult to show that this is the same as the category $\mathcal{T}_{\sigma(X)}$ associated to the topological space $\sigma(X)$.

Given F an object of **Sheaf**, we define, for $U \to X$ in \mathcal{T}_X , the set $\tilde{F}(U) = Mor(U, F)$.

By the previous discussion, we see that \tilde{F} is a sheaf in the classical sense on \mathcal{T}_X .

Equivalently, we can think of \tilde{F} as a sheaf on $\mathcal{T}_{\sigma(X)}$.

More generally, a classical sheaf on \mathcal{T}_X is called a (Zariski) sheaf on X by abuse of terminology.

Sheaves with structure

One important example of a sheaf on X is the sheaf \mathcal{O} which associates $\mathcal{O}(U)$ to each open set $U \to X$. (Recall that $\mathcal{O}(U) = \operatorname{Mor}(U, \mathbb{A}^1)$; so $\mathcal{O} = \widetilde{\mathbb{A}^1}$ with notation as above.)

Sometimes we write this as \mathcal{O}_X to emphasize that we are thinking of the sheaf on X.

This is not just a sheaf of sets but a sheaf of *rings*. In other words, we have a contravariant functor \mathcal{T}_X to the category **Ring** of rings which has the sheaf property.

Similarly, a sheaf of abelian groups on X is a contravariant functor T_X to the category **Ab** of abelian groups which has the sheaf property.

A homomorphism $M \to N$ of sheaves of abelian groups (or rings) is a morphism of sheaves for which the set map $M(U) \to N(U)$ is a homomorphism of abelian groups (respectively rings) for each $U \to X$.

Given a sheaf M of abelian groups on X, it is not difficult to see that the association of End(M(U)) to $U \to X$ gives a *sheaf* of rings on X. We denote this as End(M).

Given a sheaf M of abelian groups and a sheaf R of rings on X, we can ask for a homomorphism $R \to \text{End}(M)$ of sheaves of rings.

Given such a homomorphism we say that M is called a sheaf of modules over the sheaf of rings R.

In the next lecture we will talk about a special class of sheaves of \mathcal{O}_X modules.