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Exercises:

5.1. Prove the following proposition, due to Kaplansky: Let A be a ring in which
every left ideal is projective. Then every submodule of a free A-module is
isomorphic to a direct sum of modules each of which is isomorphic to a left
ideal in A. Hence every submodule of a projective module is projective.
(Hint: Proceed as in the proof of Theorem 5.1.)

5.2. Prove that a submodule of a finitely-generated module over a principal ideal
domain is finitely-generated. State the fundamental theorem for finitely-
generated modules over principal ideal domains.

5.3. Let 4, B, C be finitely generated modules over the principal ideal domain A.
Show that if A®@C=B®C, then 4= B. Give counterexamples if one drops
(a) the condition that the modules be finitely generated, (b) the condition that .1
is a principal ideal domain.

5.4. Show that submodules of projective modules need not be projective. (A =Z .,
where p is a prime. Z —Z .—Z, is short exact but does not split!)

5.5. Develop a theory of linear transformations T : V—V of finite-dimensional
vectorspaces over a field K by utilizing the fundamental theorem in the
integral domain K[T1].

6. Dualization, Injective Modules

We introduce here the process of dualization only as a heuristic
procedure. However, we shall see in Chapter II that it is a special case of
a more general and canonical procedure. Suppose given a statement
involving only modules and homomorphisms of modules; for example,
the characterization of the direct sum of modules by its universal property
given in Proposition 3.2:

“The system consisting of the direct sum S of modules {4}, jeJ,
together with the homomorphisms i;: 4,—S, is characterized by
the following property. To any module M and homomorphisms
{i;: A;,— M}, je J. there is a unique homomorphism y : $— M such that

for every je J the diagram
Aj\
[

s M

iscommutative.”

The dual of such a statement 1s obtained by “reversing the arrows”;
more precisely, whenever in the original statement a homomorphism
occurs we replace it by a homomorphism in the opposite direction.
In our example the dual statement reads therefore as follows:

“Given a module T and homomorphisms {z;: T—A;}. jeJ. To
any module M and homomorphisms {¢;: M— A}, je J, there exists a
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unique homomorphism ¢ : M— T such that for every j € J the diagram

is commutative.”

It is readily seen that this is the universal property characierizing
the direct product of modules {A;}, jeJ, the ;i being the canonical
projections (Proposition 3.3). We therefore say that the notion of the
direct product is dual to the notion of the direct sum.

Clearly to dualize a given statement we have to express it entirely
in terms of modules and homomorphisms (not elements etc.). This can be
done for a great many — though not all — of the basic notions introduced
in Sections 1, ..., 5. In the remainder of this section we shall deal with a
very important special case in greater detail: We define the class of
injective modules by a property dual to the defining property of projective
modules. Since in our original definition of projective modules the term
Lsurjective” occurs, we first have to find a characterization of surjective
homomorphisms in terms of modules and homomorphisms only. This
is achieved by the following definition and Proposition 6.1.

Definition. A module homomorphism ¢: B— C is epimorphic or an
epimorphism if o, e =0,¢ implies «; =o, for any two homomorphisms
o:C—M,i=12

Proposition 6.1. ¢: B— C is epimorphic if and only if it is surjective.

Proof. Let B-5>C—Z5*M. If ¢ is surjective then clearly o, eb=o,¢b
for all be B, implies o, c =, ¢ for all ¢ e C. Conversely, suppose & epi-
morphic and consider Bivc%-?(‘/a B, where 7 is the canonical projec-
tion and 0 is the zero map. Since O =0 = 7, we obtain 0 =7 and there-
fore C/eB=0or C=¢B. []

Dualizing the above definition in the obvious way we have

Definition. The module homomorphism p: A—B is monomorphic
or a monomorphism if po, = pe, implies o, =a, for any two homo-
morphisms o;: M— A, i= 1.2,

Of course one expects that “monomorphic” means the same thing
as “injective”. For modules this is indeed the case; thus we have

Proposition 6.2. yu: A— B is monomorphic if and only if it is injective.

Proof. If p is injective, then uo, x=pa,x for all xe M implies
oy x=0,x for all xe M. Conversely, suppose u monomorphic and
ay, a, € A such that pa; = pa,. Choose M = A and 2,: A— A such that
al)=a; i=1,2. Then clearly po;; = pot, ; hence oy =, and a4, =a,. []
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It should be remarked here that from the categorical point of view
(Chapter I1) definitions should whenever possible be worded in terms of
maps only. The basic notions therefore are “epimorphism” and “mono-
morphism”, both of which are defined entirely in terms of maps. It is
a fortunate coincidence that, for modules, “monomorphic” and “injective”
on the one hand and “epimorphic” and “surjective” on the other hand
mean the same thing. We shall see in Chapter 11 that in other categories
monomorphisms do not have to be injective and epimorphisms do not
have to be surjective. Notice that, to test whether a homomorphism is
injective (surjective) one simply has to look at the homomorphism
itself, whereas to test whether a homomorphism is monomorphic
(epimorphic) one has, in principle, to consult all A-module homo-
morphisms.

We are now prepared to dualize the notion of a projective module.

Definition. A A-module [ is called injective if for every homomorphism
o: A—1 and every monomorphism u:A—B there exists a homo-
morphism f: B—1I such that fu=aqa, ie. such that the diagram

@

s

is commutative. Since u may be regarded as an embedding, it is natural
simply to say that I is injective if homomorphisms into I may be extended
(from a given domain A4 to a larger domain B).

Clearly. one will expect that propositions about projective modules
will dualize to propositions about injective modules. The reader must
be warned, however, that even if the statement of a proposition is dualiz-
able, the proof may not be. Thus it may happen that the dual of a true
proposition turns out to be false. One must therefore give a proof of the
dual proposition. One of the main objectives of Section 8 will, in fact,
be to formulate and prove the dual of Theorem 4.7 (see Theorem 8.4).
However, we shall need some preparation; first we state the dual of
Proposition 4.5.

Proposition 6.3. A direct product of modules || I; is injective if and
only if each I is injective. (] jed

The reader may check that in this particular instance the proof of
Proposition 4.5 is dualizable. We therefore leave the details to the reader.

Exercises:

6.1. (a) Show that the zero module 0 is characterized by the property: To any
module M there exists precisely one homomorphism ¢ : 0— M.
(b) Show that the dual property also characterizes the zero module
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6.2. Give a universal characterization of kernel and cokernel, and show that kernel
and cokernel are dual notions.

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those
of Exercises 3.4 and 3.5.

6.4. Let ¢ : A— B. Characterize img, ¢ "' B, for B, < B, without using elements.
What are their duals? Hence (or otherwise) characterize exactness.

6.5. What is the dual of the canonical homomorphism ¢ : (P A,— [] A? What is

ied ieJ
the dual of the assertion that o is an injection? Is the dual true?

7. Injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal
ideal domain is free. It is reasonable to expect that the injective modules
over a principal ideal domain also have a simple structure. We first
define:

Definition. Let A be an integral domain. A A-module D is divisible
if for every d e D and every 0+ A € A there exists ¢ € D such that 1c=d.
Note that we do not require the uniqueness of ¢

We list a few examples:

(a) As Z-module the additive group of the rationals @ is divisible.
In this example ¢ is uniquely determined.

(b) As Z-module @ Z is divisible. Here c¢ is not uniquely determined.

(c) The additive group of the reals IR, as well as IR/Z, are divisible.

(d) A non-trivial finitely generated abelian group A is never divisible.
Indeed. A is a direct sum of cyclic groups, which clearly are not divisible.

Theorem 7.1. Let A be a principal ideal domain. A A-module is in-
Jective if and only if it is divisible.

Proof. First suppose D is injective. Let de D and 0+le A We
have to show that there exists ce D such that A¢=d. Define a: A—D
by a(l)=d and p: A—A by u(l)=4. Since A is an integral domain,
u(&)=¢4=0if and only if £ =0. Hence p is monomorphic. Since D is
injective. there exists ff: A— D such that fu=a. We obtain

d=a(l)=Bu(l)=p(A)=2p(1).

Hence by setting ¢ = (1) we obtain d = Ac. (Notice that so far no use is
made of the fact that A is a principal ideal domain.)
Now suppose D is divisible. Consider the following diagram

A+t B

|

D
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We have to show the existence of ff: B—D such that fu=a. To
simplify the notation we consider u as an embedding of 1 submodule 4
into B. We look at pairs (4, a;) with AC A;C B, a;: A;— D such that
a;| s =o. Let @ be the set of all such pairs. Clearly @ is nonempty, since
(A,2) is in @. The relation (A4;,o;) = (A, o) If A;€ A and o], =0,
defines an ordering in @. With this ordering @ is inductive. Indeed,
every chain (A4;,a,), jeJ has an upper bound, namely (| JA4;, (o)
where | ) 4, is simply the union, and | )o, is defined as follows: If ae | )4,
then a € A, for some k e J. We define Uocj(a) = o (a). Plainly UacJi is well-
defined and is a homomorphism, and

A, e) = ()45 Jay)-

By Zorn’s Lemma there exists a maximal element (4,%) in &. We shall
show that 4 = B, thus proving the theorem. Suppose A + B; then there
exists be B with b ¢ A. The set of 1€ A such that 1be A4 is readily seen
tobeanideal of A. Since A isa principal ideal domain, thisideal is generated
by one element, say A,. If 1, % 0. then we use the fact that D is divisible
to find ¢ € D such that %(4bh) = Ayc. If 4, =0, we choose an arbitrary c.
The homomorphism z may now be extended to the module A4 generated
by A4 and b, by setting &(a + 4b) =a(@) + A¢. We have to check that this
definition is consistent. If 1b € 4, we have &(4b) = Ac. But A = £ 1, for some
& e A and therefore 1b=E4,b. Hence

GAb) =F(EAgb) = ET(Agb) = Edgc=ic.

Since (4,%) <(A, &), this contradicts the maximality of (4, %), so that

A= B as desired. []
Proposition 7.2. Every quotient of a divisible module is divisible.

Proof. Let ¢: D—E be an epimorphism and let D be divisible.
For ec E and 0+ Ae A there exists d e D with &(d)=e¢ and d' € D with
Ad'=d. Setting ¢ =¢(d) we have ie¢' = le(d)=¢e(dd)=¢e(d)=e. []

As a corollary we obtain the dual of Corollary 5.3,

Corollary 7.3. Let A be a principal ideal domain. Every gquotient of an
injective A-module is injective. []

Next we restrict ourselves temporarily to abelian groups and prove
in that special case

Proposition 7.4. Every abelian group may be embedded in a divisible
(hence injective) abelian group.

The reader may compare this Proposition to Proposition 4.3, which
says that every A-module is a quotient of a free, hence projective, A-
module.

Proof. We shall define a monomorphism of the abelian group A
into a direct product of copies of Q)/Z. By Proposition 6.3 this will
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suffice. Let 04 a e A and let (a) denote the subgroup of A generated by a.
Define a:(a)— Q/Z as follows: If the order of ae 4 is infinite choose
0 #+ af(a) arbitrary. If the order of a€ A is finite, say n, choose 0+ a(a)
to have order dividing ». Since @Q/Z is injective, there exists a map
By A—Q/Z such that the diagram

(a)— A
O/Z

is commutative. By the universal property of the product, the 8, define

auniquehomomorphism ff: A— || (Q/Z),.Clearly fisamonomorphism

acA
a¥0

since Ba)£0ifa+0. []

For abelian groups, the additive group of the integers Z is projective
and has the property that to any abelian group G # 0 there exists a non-
zero homomorphism ¢ : Z— G. The group Q/Z has the dual properties;
it is injective and to any abelian group G 0 there is a nonzero homo-
morphism y: G— Q/Z. Since a direct sum of copies of Z is called [ree,
we shall term a direct product of copies of Q/Z cofree. Note that the two
properties of Z mentioned above do not characterize Z entirely. Therefore
“cofree” is not the exact dual of “free™, it is dual only in certain respects.
In Section 8 the generalization of this concept to arbitrary rings is
carried through.

Exercises:

7.1. Prove the following proposition: The A -module I is injective if and only if
for every left ideal J C A and for every A-module homomorphism o : J—1I the

diagram J ¥l

a '-.ﬂ
Ik
may be completed by a homomorphism f§ : A— T such that the resulting triangle
is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

7.2. Let 0—+R—F— A—0 be a short exact sequence of abelian groups, with F
free. By embedding F in a direct sum of copies of @). show how to embed A4
in a divisible group.

7.3. Show that every abelian group admits a unique maximal divisible subgroup

74. Show that if 4 is a finite abelian group, then Homz(4, Q/Z)= A. Deduce
that if there is a short exact sequence 0— 4'— A— A"—0 of abelian groups
with A finite, then there is a short exact sequence 0—A4"— A4— A'—0.

7.5. Show that a torsion-free divisible group D is a @Q-vector space. Show that
Homg(A, D) is then also divisible. Is this true for any divisible group D?

7.6. Show that @ is a direct summand in a direct product of copies of Q/Z.



