26 1. Modules

Exercises:

4.1. Let V be a vector space of countable dimension over the field K. Let
A=Homg(V, V) Show that, as K-vector spaces V. is isomorphic to V@ V.
We therefore obtain

A =Homg(V, V)= Homy(V@®V, V') = Homy(V, V)@ Homg(V, V)= A®A .

Conclude that, in general, the free module on a set of n elements may be iso-
morphic to the free module on a set of m elements, with nm.

4.2. Given two projective A-modules P, Q, show that there exists a free A-module R
such that POR = Q@R is free. (Hint: Let P@ P and Q@ Q" be free. Define
R=PaQaQ1&PEPI® =0 dPOPI@QDVD )

4.3. Show that @ is not a free Z-module.

4.4. Need a direct product of projective modules be projective?

4.5. Show that if 0=N—=P—-4—0, 0->M—0—A—0 are exact with P,Q
projective, then P@® M = Q @ N. (Hint: Use Exercise 3.4.)

4.6. We say that A has a finite presentation if there is a short exact sequence
0—>N—P—A4—0 with P finitely-generated projective and N finitely-
generated. Show that

(1) if A has a finite presentation. then. for every exact sequence

0—R—S—A—0

with § finitely-generated, R is also finitely-generated:

(i) if Ahas a finite presentation, it has a finite presentation with P free;

(iii) if A has a finite presentation every presentation 0— N—P—A—0
with P projective, N finitely-generated is finite, and every presentation
0— N—P— A—0 with P finitely-generated projective is finite:

(iv) if A has a presentation 0— N;— P,— A—0 with P, finitely-generated
projective, and a presentation 0— N,— P,—A—0 with P, projective, N,
finitely-generated, then 4 has a finite presentation (indeed, both the given
presentations are finite).

4.7. Let A=K(x,,...,x,,...) be the polynomial ring in countably many in-
determinates x,, ..., X,, ... over the field K. Show that the ideal I generated

by xy, ..., X,, ... is not finitely generated. Hence we may have a presentation
0—N—P—A—0 with P finitely generated projective and N not finitely-
generated.

5. Projective Modules over a Principal Ideal Domain

Here we shall prove a rather difficult theorem about principal ideal
domains. We remark that a very simple proofis available if one is content
to consider only finitely generated A-modules; then the theorem forms
a part of the fundamental classical theorem on the structure of finitely
generated modules over principal ideal domains.

Recall that a principal ideal domain A is a commutative ring with-
out divisors of zero in which every ideal is principal, i.e. generated by
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one element. Tt follows that as a module every ideal in A is isomorphic
to A itself.

Theorem 5.1. Over a principal ideal domain A every submodule of
a free A-module is free.

Since projective modules are direct summands in free modules,
this implies

Corollary 5.2. Over a principal ideal domain, every projective module
is free.

Corollary 5.3. Over a principal ideal domain, every submodule of a
projective module is projective.

Proof of Theorem 5.1. Let P= (P A;. where A;= A, be a free module

Jjed
and let R be a submodule of P. We shall show that R has a basis. Assume J
well-ordered and define for every je J modules
ﬁm=®/1f= P(J'F@Ai-
i<j <]
Then every element a e P ;,n R may be written uniquely in the form (b, 7)

where be P, and Ae A;. We define a homomorphism f;: P;,nR—A
by f;(a) = 4. Since the kernel of f; is P, nR we obtain an exact sequence

P;,nR->P;nR—»imf;.

Clearly im f; is an ideal in A. Since A is a principal ideal domain, this ideal
is generated by one element, say 4;. For ;%0 we choose c;e F;,nR,
such that fj(c;)=4;. Let J'CJ consist of those j such that 4;+0. We
claim that the family {c;}, je J', is a basis of R.

First we show that {c;},j e J', is linearly independent. Let >, b ¢, =0
k=1

and let j, <j, <--- <j,. Then applying the homomorphism f; , we get
o, fi(¢;.) = 1, 4;,=0. Since A, # 0 this implies g, =0. The assertion then
follows by induction on n.

Finally, we show that {c;}, je J', generates R. Assume the contrary.
Then there is a least i € J such that there exists a € P;,n R which cannot
be written as a linear combination of {¢;},je J'. Ifi¢ J', then ae F;,nR;
but then there exists k <i such that ae P, R, contradicting the mini-
mality of i. ThusieJ"

Consider f;(a)=pu4, and form b=a — pc,. Clearly

fib)= fila)— filpc)=0.

Hence be ﬁmﬁR, and b cannot be written as a linear combination of
{c;}, je J'. But there exists k <i with b e P,,nR, thus contradicting the
minimality of i. Hence {c;}, je J, is a basis of E. []
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Exercises:

5.1. Prove the following proposition, due to Kaplansky: Let A be a ring in which
every left ideal is projective. Then every submodule of a free A-module is
isomorphic to a direct sum of modules each of which is isomorphic to a left
ideal in A. Hence every submodule of a projective module is projective.
(Hint: Proceed as in the proof of Theorem 5.1.)

5.2. Prove that a submodule of a finitely-generated module over a principal ideal
domain is finitely-generated. State the fundamental theorem for finitely-
generated modules over principal ideal domains.

5.3. Let 4, B, C be finitely generated modules over the principal ideal domain A.
Show that if A®@C=B®C, then 4= B. Give counterexamples if one drops
(a) the condition that the modules be finitely generated, (b) the condition that .1
is a principal ideal domain.

5.4. Show that submodules of projective modules need not be projective. (A =Z .,
where p is a prime. Z —Z .—Z, is short exact but does not split!)

5.5. Develop a theory of linear transformations T : V—V of finite-dimensional
vectorspaces over a field K by utilizing the fundamental theorem in the
integral domain K[T1].

6. Dualization, Injective Modules

We introduce here the process of dualization only as a heuristic
procedure. However, we shall see in Chapter II that it is a special case of
a more general and canonical procedure. Suppose given a statement
involving only modules and homomorphisms of modules; for example,
the characterization of the direct sum of modules by its universal property
given in Proposition 3.2:

“The system consisting of the direct sum S of modules {4}, jeJ,
together with the homomorphisms i;: 4,—S, is characterized by
the following property. To any module M and homomorphisms
{i;: A;,— M}, je J. there is a unique homomorphism y : $— M such that

for every je J the diagram
Aj\
[

s M

iscommutative.”

The dual of such a statement 1s obtained by “reversing the arrows”;
more precisely, whenever in the original statement a homomorphism
occurs we replace it by a homomorphism in the opposite direction.
In our example the dual statement reads therefore as follows:

“Given a module T and homomorphisms {z;: T—A;}. jeJ. To
any module M and homomorphisms {¢;: M— A}, je J, there exists a



