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Simultaneous eigenvalues

Given a commuting collection ay, ..., a, of operators on a vector space V
over a field F.

This amounts to giving a homomorphism ¢ : Z[xi, ..., xp] — Endg(V) of
rings defined by x; — a; for i =1,..., k.

Note that Endg(V) is not necessarily commutative, but the image of a
commutative ring under a homomorphism is commutative.

A simultaneous eigenvector of these operators is a non-zero vector v € V
such that ajv = \jv with \; € Ffori=1,..., k.

In particular, this corresponds to a homomorphism X : Z[xq, ..., x,] = F
given by x; — A;.
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The kernel of X is a prime ideal in Z[xq, ..., xp| since F is a domain.

Conversely, given a prime ideal p in Z[x,. .., Xp], the quotient ring is a
domain.

Take F, to be the field of fractions of the domain Z[x, ..., x,]/p.
We have a natural homomorphism A, : Z[xi, ..., x| = F.

Clearly, the x; operates on the (one-dimensional) vector space F, via its
image a; = A\p(x;) in Fp.

So we can think of 1 € F, as a “simultaneous eigenvector” of the operators
Xx; with the action x; -1 = a; - 1.
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Spectrum

More generally, if R = Z[x1,...,xp|/({fi,...,fq) is a finitely presented ring,
then homomorphisms from it to a field F correspond to simultaneous
eigenvalues for a collection of commuting operators that satisfy the given
polynomials.

Simultaneous eigenvalues of the ring R = Z[x1,...,xp]/(fi,...,fq) are
points of the “spectrum” of this collection.

On the other hand, if Z[x1, ..., x,] = F is a homomorphism with x; — a;
where at least one of f;(a) is a unit then we see that a is not in the
spectrum of R.

This motivates us to define the (algebraic) spectrum of R to be the
collection of prime ideals in R.
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For a commutative ring R, we denote by Spec(R), the collection of prime
ideals in R.

If f: R — S is a ring homomorphism, and p is a prime ideal in S, then S/p
is a domain.

Thus, the kernel ¢ = f~1(p) of R = S — S/p is also a prime ideal in R.
This gives a set map f* : Spec(S) — Spec(R) which sends p to £~ 1(p).
Hence, Spec defines a contravariant functor CRing to Set.

Note that {0} has no prime ideal so Spec({0}) is the empty set.
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If g is an element of R, then prime ideals in R; can be identified with prime
ideals in R that do not contain g.

This gives an inclusion Spec(Rg) C Spec(R) via the natural map R — Rg.

If /'is an ideal in R, the prime ideals in R// can be identified with prime
ideals in R that contain /.

This gives an inclusion Spec(R/I) C Spec(R) via the natural map R — R/I.
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Zariski Topology

Let us define a subset of Spec(R) of the form Spec(R//) to be a closed
subset.

Given ideals / and J, one sees that if a prime p contains / N J, then

» Either p contains /, or

» There is an element a € '\ p, and then for every b€ J, abe INJ Cp
so that b € p.

It follows that Spec(R/I) U Spec(R/J) = Spec(R/(I N J)).

In other words, the union of closed subsets in Spec(R) is closed. as required.
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Suppose that (/) is a collection of ideals in R.
A prime ideal p contains each I, if and only if p contains J =" /.

In other words, the intersection of the closed sets Spec(R/l,) in Spec(R) is
the closed set Spec(R/J), as required.

Thus, this definition of closed sets defines a topology on Spec(R) called the
Zariski Topology on R.

We use the notation Spec(R) to refer to this topological space by abuse of
notation.
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Open sets

If g is an element of R, then Spec(R;) C Spec(R) is the complement of the
closed set Spec(R/(g)).

Thus, it Spec(Rg) is an open subset of Spec(R).

We now see that sets of this form are a “basis” for open sets in the sense
that every open set is a union of these.

More generally, if / is an ideal in R, then Spec(R) \ Spec(R//) is the
collection of prime ideals that do not contain |.

For each such prime ideal p, there is an element g in I\ p.

It follows that Spec(R) \ Spec(R/!) is the union of the (basic) open sets
Spec(Ryg) as g varies over elements of /\ p.
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Homomorphisms and continuity

Given a ring homomorphism f : R — S, we have seen that there is a map
f* : Spec(S) — Spec(R) which sends a prime p in S to f~1(p) in R.

We now check that this is continuous.

Given Spec(R/I) a closed set in Spec(R). The prime f—1(p) lies in
Spec(R/1) if I C f~1(p).

This is equivalent to saying the (/) C p. Which is equivalent to saying
theat f(/)S C p, since the latter is an ideal in S.

Thus, f*(p) lies in Spec(R/I) if and only if p lies in Spec(S/f(/)S.

In other words, (f*)~1(Spec(R/I)) = Spec(S/f(1)S) which is a closed set
in Spec(S).
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The functor o

Note that if U = Sp(R) is the (affine scheme) functor CRing to Set which
sends a ring T to the set Hom(R, T), then

R = O(U) = Hom(U, A?)

For an affine scheme U we define o(U) = Spec(O(V)).

If U= Sp(R) and V = Sp(S), then morphisms (natural transformations)
V' — U are identified with ring homomorphisms R — S.

We have shown that f* : o(V) = Spec(S) — o(U) = Spec(R) is
continuous.

Thus, we have a functor o from affine schemes to topological spaces.

We now extend this functor to other schemes.
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Extension to separated Schemes
Suppose X is a separated scheme defined by patching
E = l—liJViJ = U=1;U;
where U; are affine schemes and V;; C U; x U; a closed subscheme (and
thus affine) such that the projection maps V;; — U; are open subschemes.

We then get maps of topological spaces

E' = U jo(VUD) = U U; o (UD)

Moreover, we claim that these maps define an open equivalence relation on
the topological space U'.

» In other words, E’ is a subset of U’ and defines an equivalence relation
on it.

» The map 71 : E/ — U’ is an open continuous map.

It then follows that there is a natural quotient topology on U'/E’.
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To prove the claim, we note that the morphism of affine schemes V;; — U;
is makes the former an open subscheme.

From the previous discussion, this means that o(V; ;) — o(U;) is an open
subset.

In particular, this is an open map. Hence, m; : E/ — U’ is open and
continuous.

Moreover, o(V; ;) — o(U;) x o(U;) is an inclusion. Thus, £/ — U’ x U’ is
an inclusion.

The fact that E — U x U is an equivalence relation implies that
E’ — U’ x U’ is also an equivalence relation. (As usual, one only needs to
check transitivity.)

The claim thus follows.

We define o(X) to be this topological space associated with a scheme X.

Kapil Hari Paranjape (IISER Mobhali) Topological space of a Scheme 8th November 2021 13/16



Continuity of morphisms

Every point of o(X) lies in an open set of the form Spec(R(?)) for some i in
this definition.

Note that continuity of maps is a local property.

It follows that a morphism X — Y of separated schemes gives a continuous
map o(X) — o(Y) of the underlying topological spaces.

Thus o is a functor SScheme to Top where the former is the category of
separated schemes and the latter is the category of topological spaces.
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General schemes

We now expand the definition of ¢ to all schemes—not necessarily
separated.

Such a scheme X can again be described by patching
E = IJ,'JV,'J = U=U;U;

where U; are affine schemes and V;; C U; x U; a subscheme (not necessarily
closed) such that the projection maps Vi j — U; are open subschemes.

This means that V;; are quasi-affine schemes.

Once we extend the definition of o to such schemes, the rest of the
argument above can be repeated in this case as well.
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o for Quasi-affine schemes

Given a commutative ring R and an ideal /, we defined the quasi-affine
scheme Q(R, /) as a functor CRing to Set.

The set Q(R,/)(T) consists of homomorphisms R — T where the image of
| generates the unit ideal in T.

As seen earlier, we can write Q(R, /) as the sheaf-theoretic union of the
affine subschemes Sp(Rg) as g varies over elements of /.

In particular, we note that o(Q(R,/)) is isomorphic to the open subspace
Spec(R) \ Spec(R/I) of Spec(R).

Using this one can extend o as a functor Scheme to Set by writing
schemes of quotients of quasi-affine schemes.
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