$\mathbb{A}^{2} \backslash\{(0,0)\}$ as a union?

Recall that the quasi-affine scheme $A\left(x_{1}, x_{2} ; ; x_{1}, x_{2}\right)$ represents $U=\mathbb{A}^{2} \backslash\{(0,0)\}$.

- $U_{1}=\mathbb{A}\left(x_{1}, x_{2}, u_{1} ; u_{1} x_{1}-1\right)$ represents the sabscheme of \mathbb{A}^{2} where x_{1}

$-U_{2}=\mathbb{A}\left(x_{1}, x_{2}, u_{2} ; u_{2} x_{2}-1\right)$ represents the subscheme of \mathbb{A}^{2} where x_{2} is non-zero. cunt.
- The intersection of U_{1} and U_{2} in \mathbb{A}^{2} is represented by the scheme $U_{1,2}=\mathbb{A}\left(x_{1}, x_{2}, u_{1}, u_{2} ; u_{1} x_{1}-1, u_{2} x_{2}-1\right)$. When Sin x_{1} dx in ts
Is there some way in which we can obtain the above \mathbb{Z}-quasi affine scheme U via "patching U_{1} and U_{2} along $U_{1,2}$ "?

1) In 3 rd slide it is considered that U1 is subscheme of $A^{\wedge} 2$ but it is not seems me obvious also there was no explanation for it. what i was thinking in tially that it should be subscheme of $A^{4} 4$ than defining intersection and other stuffs will be more understandable.
one another thing which i could understand is that we can convert this affine scheme U1 to quasi affine scheme ($\times 1, \times 2 ; \times 1$). But exactly what you want to mean by saying $U 1$ as subscheme of A2 it is not clear to me.

$$
U_{1,2}(R) \subset A^{2}(R)=R^{2}
$$

$\left(a_{1}, \alpha_{2}\right) \quad a_{1} a_{2}$ is cumin.

$$
\begin{aligned}
& Q=A\left(x_{1}, x_{2} ; x_{1}, x_{2}\right) \\
& Q(R)=\left\{\frac{\left.\left(a, a_{2}\right) \mid\left\langle a_{1}, a_{2}\right\rangle=R\right\}}{k R^{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}(R) \cup V_{2}(R) \neq Q(R) \text { long posisicu by pars }
\end{aligned}
$$

This suggests that we consider the following data:

- Elements u_{1}, u_{2} in R such that $\left\langle u_{1}, u_{2}\right\rangle=R$;
- for $i=1,2$ a point p_{i} in $U_{i}\left(R_{u_{i}}\right)$;
- the condition that p_{1} and p_{2} correspond to a point $q_{1,2}$ in $U_{1,2}\left(R_{u_{1} u_{2}}\right)$.

Such data should be considered as a point in the "union of U_{1} and U_{2} joined along $U_{1,2}$ ".
Let us see that this data indeed gives us an R-point of the quasi-affine scheme U.
Warning: Every point in $U(R)$ need not be obtained this way! For example, a point of $U_{1}(R)$ where the second co-ordinate is 0 !
All that is being said is that such data does give a point in $U(R)$. This was an error in an earlier version of these slides.
2) in slide 5 , "union of U1 and U2 joined along U1,2" can you explain it. i am trying to understan by example considering u1(Z2), u2(Z3) and then join them but it not clear to me how to do that.

$$
\begin{aligned}
& U_{1}=A\left(x_{1}, x_{2}, u_{1} ;\left(x_{1} x_{1}-1\right)\right. \\
& A^{2}=A\left(x_{1}, x_{2} ;\right) \\
& U_{1} \rightarrow A^{2} \\
& \left(x_{1}, x_{2}, n_{1}\right) \rightarrow\left(x_{1}, x_{2}\right)
\end{aligned}
$$

(1) There is a marphim vofunctos.

$$
U_{1} \rightarrow A^{2}
$$

(2) for $\log R \quad V_{1}(R) \rightarrow A^{2}(R) \dot{L} \mid$

$$
\begin{aligned}
& v_{1}=A\left(x_{1}, x_{2} ; ; x_{1}\right) \leftrightarrow 1^{2} \\
& a_{11} a_{2} \in R ;\left\langle a_{0}\right\rangle_{R}=R \quad \Leftrightarrow \quad a_{1} \text { is init } \\
& u_{1} a_{1}=1 \\
& V_{1}=A\left(x_{1}, x_{2} ; j x_{1}\right) \cdot \\
& =A\left(x_{1}, x_{2}, 4, j u, x_{1}-1\right) \text {. } \\
& R \text { is a tool. ry }
\end{aligned}
$$

$$
(1,2) \in v_{1}(2)
$$

$$
\begin{aligned}
& p_{1}=V_{1}\left(R_{n_{1}}\right)+\beta_{2} \in V_{2}\left(R_{n_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V\left[\begin{array}{l}
n_{1}, n_{2}
\end{array} \quad\left(q_{1}, k_{2}\right) \neq Q(R) \subset \mathbb{A}^{2}(R)\right. \\
& \text { Z. } \left.\quad\left(1,1, p_{2}\right) \in\left(a_{1}, b_{1}\right) \in v_{1}\left(n_{1},\right)_{1}\right) \\
& 113 \text { for } \mathrm{Rm}_{\mathrm{m}}
\end{aligned}
$$

$$
\begin{aligned}
& p_{1} \in U\left(R_{n_{1}}\right), p_{2} \in V\left(R_{n_{2}}\right) \\
& \left(p_{1}, p_{2}\right) \in U\left(R_{4}, m_{2}\right) \times V\left(R_{m, a_{n}}\right) \\
& \Rightarrow \underset{q \in Q(R)}{\longrightarrow} V\left(R_{u, w_{2}}^{*}\right)>\nabla_{i, n} \underset{\left(R, n_{n}\right)}{\longrightarrow} \\
& \text { A } \overline{p_{1} \in U} U\left(R_{n}\right)=v_{1}\left(R_{n}\right) \| U_{1}\left(n_{n}\right) \\
& R_{2} \in U\left(R_{n}\right)=V_{1}\left(R_{n_{2}}\right) \mu V_{\mathcal{L}}\left(R_{1}\right) \\
& \left.\varphi_{1}, P_{2}\right) \in T_{T_{12}}\left(R_{4}, n_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& X=A\left(x_{1}, \ldots x_{j} ; f_{1} \ldots f_{g} ; \underline{h_{1}, h_{s}}\right) \\
& \left.y=A\left(x_{1}, \ldots, x_{p} ; g_{2}, \ldots g_{r}\right) ; k_{1} \ldots, k_{*}\right) \\
& X \cap y=A\left(x_{1} \ldots x_{p} ; f \ldots, A, g_{2}, y_{r}\right) \\
& \left.\bar{x}=A\left(x_{1} \ldots, x_{p} ; f_{n}, f_{i}\right)\right\} x^{\prime \prime} \bar{x}-\underline{x}^{\prime \prime} \\
& \underline{x}=A\left(x_{1} \ldots, x_{p}!b_{1} \ldots d_{s}\right) \\
& x \cap y=(\bar{x} \cap \bar{y})-(\underline{x} y \underline{y}) \\
& \underline{a}=\left(a_{1}, \ldots, p\right)\left\langle f_{i}(\xi)\right\rangle=0 \\
& \left\langle h_{i} k_{j}(\omega)\right\rangle=R \quad\left[\begin{array}{l}
\left\langle h_{i}(t)\right\rangle=R . \\
\left\langle g_{j}(\omega)=0\right. \\
\left\langle 1_{i}(\omega)\right\rangle=R
\end{array}\right. \\
& x \cap y=A\left(x_{1}, x_{p} ; f_{1} \ldots, f_{n}, y_{1}, \ldots, f_{r} ;\right. \\
& \quad h_{1} k_{1}, \ldots, k_{s} k_{z}
\end{aligned}
$$

Vnum.

Objects
6 N. $k^{i} \quad$ "mppemanaic"
Maphiom. $i \rightarrow j \quad i \in j i \geqslant j$

$$
\text { Diffeverin } \mid[0, \ldots, i] \rightarrow[0, \ldots, j)
$$

Buasobjut

$$
\begin{aligned}
& \left\{\begin{array}{l}
(1)(12),(34) \\
e \\
e \\
b
\end{array},(12)(34)\right\}<S_{4} \\
& a \text { e } \\
& S_{p}(S) \quad S \\
& \text { b c } \\
& A f t^{\circ}=C 2 c^{0 p}
\end{aligned}
$$

Next two slides from Lecture 16
 handwritten extra explanation.

Scheme σ Topstee

$$
\sigma^{\operatorname{Som}(l)}=\sigma(N)
$$

AJA $\because \operatorname{Mor}\left(T, A^{2}\right)=R$

$$
\begin{aligned}
& E \Rightarrow V=\sum_{i}^{2} \quad X_{i} \quad V_{i} \quad R_{i}=\operatorname{Mov}\left(v_{i}, A^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { subpan torm. } \\
& V^{\prime}=\frac{11}{i} S_{\text {gea }}\left(R^{i}\right) \\
& E^{\prime}=\sum_{i, j} \sigma\left(v_{i, j}\right) \\
& -E^{\prime} c v^{\prime} x v^{\prime} \dot{\sim} \\
& \text { an ogniden seke. } \\
& \text { - } E^{\prime} \rightarrow \omega^{\prime} \text { in atrina } \\
& \sigma(X)=U^{\prime} \not E^{\prime} \text { as coma. ma. }
\end{aligned}
$$

$x \rightarrow X_{1}^{2}$ is a moncidreham.
$\sigma(x) \rightarrow \sigma\left(x_{1}\right)$ is ahampl-
\# $X \rightarrow X^{\prime}$ is an sionveri.

$$
S_{p}\left(z_{i}[x, y] /\left(x^{2}\right)\right) \leftarrow S_{p}((x)[x, y] /(x)=\mathbb{Z}[x])
$$

Spec \longleftrightarrow Spec is not an ism fosheme.

$$
\begin{aligned}
& \frac{\operatorname{ax}[x, y]}{\left(x^{3}-y^{2}\right)} \rightarrow \mathbb{Q x [t]} \\
& x \rightarrow t^{2} \\
& y \rightarrow t^{3} \\
& \operatorname{spec}(a x[t]) \rightarrow \operatorname{spec}\left(Q[x, y]\left(x^{2}-y\right)\right)
\end{aligned}
$$

Check this is a hanes mopl.
Finit satima und sch.

