[, Modules - **3.4.** Carry out a similar exercise to the one above, assuming α'' is an isomorphism. - 3.5. Use the universal property of the direct sum to show that $$(A_1 \oplus A_2) \oplus A_3 \cong A_1 \oplus (A_2 \oplus A_3).$$ - **3.6.** Show that $\mathbb{Z}_m \oplus \mathbb{Z}_n = \mathbb{Z}_{mn}$ if and only if m and n are mutually prime. - 3.7. Show that the following statements about the exact sequence $$0 \rightarrow A' \xrightarrow{\alpha'} A \xrightarrow{\alpha''} A'' \rightarrow 0$$ of A-modules are equivalent: 22 - (i) there exists $\mu: A'' \to A$ with $\alpha'' \mu = 1$ on A''; - (ii) there exists $\varepsilon: A \to A'$ with $\varepsilon \alpha' = 1$ on A'; - (iii) $0 \rightarrow \operatorname{Hom}_{A}(B, A') \xrightarrow{\alpha'_{*}} \operatorname{Hom}_{A}(B, A) \xrightarrow{\alpha''_{*}} \operatorname{Hom}_{A}(B, A'') \rightarrow 0$ is exact for all B; - (iv) $0 \rightarrow \operatorname{Hom}_{A}(A'', C) \xrightarrow{\alpha''*} \operatorname{Hom}_{A}(A, C) \xrightarrow{\alpha''*} \operatorname{Hom}_{A}(A', C) \rightarrow 0$ is exact for all C; - (v) there exists $\mu: A'' \to A$ such that $\langle \alpha', \mu \rangle: A' \oplus A'' \xrightarrow{\sim} A$. - **3.8.** Show that if $0 \to A' \xrightarrow{\alpha'} A \xrightarrow{\alpha''} A'' \to 0$ is pure and if A'' is a direct sum of cyclic groups then statement (i) above holds (see Exercise 2.7). ## 4. Free and Projective Modules Let A be a Λ -module and let S be a subset of A. We consider the set A_0 of all elements $a \in A$ of the form $a = \sum_{s \in S} \lambda_s s$ where $\lambda_s \in \Lambda$ and $\lambda_s \neq 0$ for only a finite number of elements $s \in S$. It is trivially seen that A_s is a only a finite number of elements $s \in S$. It is trivially seen that A_0 is a submodule of A; hence it is the smallest submodule of A containing S. If for the set S the submodule A_0 is the whole of A, we shall say that S is a set of generators of A. If A admits a finite set of generators it is said to be *finitely generated*. A set S of generators of A is called a basis of A if every element $a \in A$ may be expressed uniquely in the form $a = \sum_{s \in S} \lambda_s s$ with $\lambda_s \in \Lambda$ and $\lambda_s \neq 0$ for only a finite number of elements $s \in S$. It is readily seen that a set S of generators is a basis if and only if it is *linearly independent*, that is, if $\sum_{s \in S} \lambda_s s = 0$ implies $\lambda_s = 0$ for all $s \in S$. The reader should note that not every module possesses a basis. Definition. If S is a basis of the Λ -module P, then P is called *free on the set S*. We shall call P *free* if it is free on some subset. **Proposition 4.1.** Suppose the Λ -module P is free on the set S. Then $P \cong \bigoplus_{s \in S} \Lambda_s$ where $\Lambda_s = \Lambda$ as a left module for $s \in S$. Conversely, $\bigoplus_{s \in S} \Lambda_s$ is free on the set $\{1_{A_s}, s \in S\}$. *Proof.* We define $\varphi: P \to \bigoplus_{s \in S} \Lambda_s$ as follows: Every element $a \in P$ is is expressed uniquely in the form $a = \sum_{s \in S} \lambda_s s$; set $\varphi(a) = (\lambda_s)_{s \in S}$. Conversely, for $s \in S$ define $\psi_s : \Lambda_s \to P$ by $\psi_s(\lambda_s) = \lambda_s s$. By the universal property of the direct sum the family $\{\psi_s\}$, $s \in S$, gives rise to a map $\psi = \langle \psi_s \rangle : \bigoplus_{s \in S} \Lambda_s \to P$. It is readily seen that φ and ψ are inverse to each other. The remaining assertion immediately follows from the construction of the direct sum. $\$ The next proposition yields a universal characterization of the free module on the set S. **Proposition 4.2.** Let P be free on the set S. To every Λ -module M and to every function f from S into the set underlying M, there is a unique Λ -module homomorphism $\varphi: P \rightarrow M$ extending f. *Proof.* Let $f(s) = m_s$. Set $\varphi(a) = \varphi\left(\sum_{s \in S} \lambda_s s\right) = \sum_{s \in S} \lambda_s m_s$. This obviously is the only homomorphism having the required property. \square **Proposition 4.3.** Every Λ -module A is a quotient of a free module P. *Proof.* Let S be a set of generators of A. Let $P = \bigoplus_{s \in S} \Lambda_s$ with $\Lambda_s = \Lambda$ and define $\varphi: P \rightarrow A$ to be the extension of the function f given by $f(1_{\Lambda_s}) = s$. Trivially φ is surjective. \square **Proposition 4.4.** Let P be a free Λ -module. To every surjective homomorphism $\varepsilon: B \longrightarrow C$ of Λ -modules and to every homomorphism $\gamma: P \longrightarrow C$ there exists a homomorphism $\beta: P \longrightarrow B$ such that $\varepsilon \beta = \gamma$. *Proof.* Let *P* be free on *S*. Since ε is surjective we can find elements $b_s \in B$, $s \in S$ with $\varepsilon(b_s) = \gamma(s)$, $s \in S$. Define β as the extension of the function $f: S \to B$ given by $f(s) = b_s$, $s \in S$. By the uniqueness part of Proposition 4.2 we conclude that $\varepsilon \beta = \gamma$. To emphasize the importance of the property proved in Proposition 4.4 we make the following remark: Let $A \stackrel{\mu}{\longrightarrow} B \stackrel{\varepsilon}{\longrightarrow} C$ be a short exact sequence of Λ -modules. If P is a free Λ -module Proposition 4.4 asserts that every homomorphism $\gamma: P \longrightarrow C$ is induced by a homomorphism $\beta: P \longrightarrow B$. Hence using Theorem 2.1 we can conclude that the induced sequence $$0 \longrightarrow \operatorname{Hom}_{\Lambda}(P, A) \xrightarrow{\mu_{*}} \operatorname{Hom}_{\Lambda}(P, B) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{\Lambda}(P, C) \longrightarrow 0 \tag{4.1}$$ is exact, i.e. that ε_* is surjective. Conversely, it is readily seen that exactness of (4.1) for all short exact sequences $A \rightarrow B \rightarrow C$ implies for the module P the property asserted in Proposition 4.4 for P a free module. Therefore there is considerable interest in the class of modules having this property. These are by definition the projective modules: Definition. A Λ-module P is projective if to every surjective homomorphism $\varepsilon: B \longrightarrow C$ of Λ-modules and to every homomorphism $\gamma: P \longrightarrow C$ there exists a homomorphism $\beta: P \longrightarrow B$ with $\varepsilon \beta = \gamma$. Equivalently, to any homomorphisms ε, γ with ε surjective in the diagram below there exists β such that the triangle is commutative. As mentioned above, every free module is projective. We shall give some more examples of projective modules at the end of this section. **Proposition 4.5.** A direct sum $\bigoplus_{i \in I} P_i$ is projective if and only if each P_i is. *Proof.* We prove the proposition only for $A = P \oplus Q$. The proof in the general case is analogous. First assume P and Q projective. Let $\varepsilon: B \longrightarrow C$ be surjective and $\gamma: P \oplus Q \longrightarrow C$ a homomorphism. Define $\gamma_P = \gamma \iota_P: P \longrightarrow C$ and $\gamma_Q = \gamma \iota_Q: Q \longrightarrow C$. Since P, Q are projective there exist β_P, β_Q such that $\varepsilon \beta_P = \gamma_P, \varepsilon \beta_Q = \gamma_Q$. By the universal property of the direct sum there exists $\beta: P \oplus Q \longrightarrow B$ such that $\beta \iota_P = \beta_P$ and $\beta \iota_Q = \beta_Q$. It follows that $(\varepsilon \beta) \iota_P = \varepsilon \beta_P = \gamma_P = \gamma \iota_P$ and $(\varepsilon \beta) \iota_Q = \varepsilon \beta_Q = \gamma_Q = \gamma \iota_Q$. By the uniqueness part of the universal property we conclude that $\varepsilon \beta = \gamma$. Of course, this could be proved using the explicit *construction* of $P \oplus Q$, but we prefer to emphasize the universal property of the direct sum. Next assume that $P \oplus Q$ is projective. Let $\varepsilon : B \longrightarrow C$ be a surjection and $\gamma_P : P \longrightarrow C$ a homomorphism. Choose $\gamma_Q : Q \longrightarrow C$ to be the zero map. We obtain $\gamma : P \oplus Q \longrightarrow C$ such that $\gamma \iota_P = \gamma_P$ and $\gamma \iota_Q = \gamma_Q = 0$. Since $P \oplus Q$ is projective there exists $\beta : P \oplus Q \longrightarrow B$ such that $\varepsilon \beta = \gamma$. Finally we obtain $\varepsilon (\beta \iota_P) = \gamma \iota_P = \gamma_P$. Hence $\beta \iota_P : P \longrightarrow B$ is the desired homomorphism. Thus P is projective; similarly Q is projective. \square In Theorem 4.7 below we shall give a number of different characterizations of projective modules. As a preparation we define: Definition. A short exact sequence $A \stackrel{\mu}{\longrightarrow} B \stackrel{\varepsilon}{\longrightarrow} C$ of Λ -modules splits if there exists a left inverse to ε , i.e. a homomorphism $\sigma: C \longrightarrow B$ such that $\sigma \varepsilon = 1_C$. The map σ is then called a splitting. We remark that the sequence $A \xrightarrow{\iota_A} A \oplus C \xrightarrow{\pi_C} C$ is exact, and splits by the homomorphism ι_C . The following lemma shows that all split short exact sequences of modules are of this form (see Exercise 3.7). **Lemma 4.6.** Suppose that $\sigma: C \to B$ is a splitting for the short exact sequence $A \xrightarrow{\mu} B \xrightarrow{\varepsilon} C$. Then B is isomorphic to the direct sum $A \oplus C$. Under this isomorphism, μ corresponds to ι_A and σ to ι_C . In this case we shall say that C (like A) is a direct summand in B. Proof. By the universal property of the direct sum we define a map ψ as follows Then the diagram is commutative; the left hand square trivially is; the right hand square is by $\varepsilon \psi(a,c) = \varepsilon(\mu a + \sigma c) = 0 + \varepsilon \sigma e = c$, and $\pi_C(a,c) = c$, $a \in A$, $c \in C$. By Lemma 1.1 ψ is an isomorphism. \square **Theorem 4.7.** For a Λ -module P the following statements are equivalent: - (1) P is projective; - (2) for every short exact sequence $A \xrightarrow{\mu} B \xrightarrow{\varepsilon} C$ of Λ -modules the induced sequence $$0 \longrightarrow \operatorname{Hom}_{\Lambda}(P, A) \xrightarrow{\mu_{*}} \operatorname{Hom}_{\Lambda}(P, B) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{\Lambda}(P, C) \longrightarrow 0$$ is exact; - (3) *if* ε : $B \rightarrow P$ is surjective, then there exists a homomorphism β : $P \rightarrow B$ such that $\varepsilon \beta = 1_P$; - (4) P is a direct summand in every module of which it is a quotient; - (5) P is a direct summand in a free module. *Proof.* (1) \Rightarrow (2). By Theorem 2.1 we only have to show exactness at $\operatorname{Hom}_{A}(P, C)$, i.e. that ε_{*} is surjective. But since $\varepsilon: B \to C$ is surjective this is asserted by the fact that P is projective. (2) \Rightarrow (3). Choose as exact sequence $\ker \varepsilon \rightarrow B \xrightarrow{\varepsilon} P$. The induced sequence $$0 \longrightarrow \operatorname{Hom}_{A}(P, \ker \varepsilon) \longrightarrow \operatorname{Hom}_{A}(P, B) \xrightarrow{\varepsilon_{*}} \operatorname{Hom}_{A}(P, P) \longrightarrow 0$$ is exact. Therefore there exists $\beta: P \rightarrow B$ such that $\varepsilon \beta = 1_P$. - $(3) \Rightarrow (4)$. Let $P \cong B/A$, then we have an exact sequence $A \mapsto B \xrightarrow{\varepsilon} P$. By (3) there exists $\beta : P \to B$ such that $\varepsilon \beta = 1_P$. By Lemma 4.6 we conclude that P is a direct summand in B. - $(4)\Rightarrow(5)$. By Proposition 4.3 P is a quotient of a free module P'. By (4) P is a direct summand in P'. - $(5) \Rightarrow (1)$. By (5) $P' \cong P \oplus Q$, where P' is a free module. Since free modules are projective, it follows from Proposition 4.5 that P is projective. \square Next we list some examples: - (a) If $\Lambda = K$, a field, then every K-module is free, hence projective. - (b) By Exercise 2.2 and (2) of Theorem 4.7, \mathbb{Z}_n is not projective as a module over the integers. Hence a finitely generated abelian group is projective if and only if it is free. - (c) Let $\Lambda = \mathbb{Z}_6$, the ring of integers modulo 6. Since $\mathbb{Z}_6 = \mathbb{Z}_3 \oplus \mathbb{Z}_2$ as a \mathbb{Z}_6 -module, Proposition 4.5 shows that \mathbb{Z}_2 as well as \mathbb{Z}_3 are projective \mathbb{Z}_6 -modules. However, they are plainly not free \mathbb{Z}_6 -modules. 26 I. Modules ## Exercises: **4.1.** Let V be a vector space of countable dimension over the field K. Let $\Lambda = \operatorname{Hom}_K(V, V)$. Show that, as K-vector spaces V, is isomorphic to $V \oplus V$. We therefore obtain $$\Lambda = \operatorname{Hom}_{K}(V, V) \cong \operatorname{Hom}_{K}(V \oplus V, V) \cong \operatorname{Hom}_{K}(V, V) \oplus \operatorname{Hom}_{K}(V, V) = \Lambda \oplus \Lambda.$$ Conclude that, in general, the free module on a set of n elements may be isomorphic to the free module on a set of m elements, with $n \neq m$. - **4.2.** Given two projective Λ -modules P, Q, show that there exists a *free* Λ -module R such that $P \oplus R \cong Q \oplus R$ is free. (Hint: Let $P \oplus P'$ and $Q \oplus Q'$ be free. Define $R = P' \oplus (Q \oplus Q') \oplus (P \oplus P') \oplus \cdots \cong Q' \oplus (P \oplus P') \oplus (Q \oplus Q') \oplus \cdots$.) - **4.3.** Show that \mathbb{Q} is not a free \mathbb{Z} -module. - 4.4. Need a direct product of projective modules be projective? - **4.5.** Show that if $0 \rightarrow N \rightarrow P \rightarrow A \rightarrow 0$, $0 \rightarrow M \rightarrow Q \rightarrow A \rightarrow 0$ are exact with P, Q projective, then $P \oplus M \cong Q \oplus N$. (Hint: Use Exercise 3.4.) - **4.6.** We say that A has a *finite presentation* if there is a short exact sequence $0 \rightarrow N \rightarrow P \rightarrow A \rightarrow 0$ with P finitely-generated projective and N finitely-generated. Show that - (i) if A has a finite presentation, then, for every exact sequence $$0 \rightarrow R \rightarrow S \rightarrow A \rightarrow 0$$ with S finitely-generated, R is also finitely-generated; - (ii) if A has a finite presentation, it has a finite presentation with P free; - (iii) if A has a finite presentation every presentation $0 \rightarrow N \rightarrow P \rightarrow A \rightarrow 0$ with P projective, N finitely-generated is finite, and every presentation $0 \rightarrow N \rightarrow P \rightarrow A \rightarrow 0$ with P finitely-generated projective is finite: - (iv) if A has a presentation $0 \rightarrow N_1 \rightarrow P_1 \rightarrow A \rightarrow 0$ with P_1 finitely-generated projective, and a presentation $0 \rightarrow N_2 \rightarrow P_2 \rightarrow A \rightarrow 0$ with P_2 projective, N_2 finitely-generated, then A has a finite presentation (indeed, both the given presentations are finite). - **4.7.** Let $A = K(x_1, ..., x_n, ...)$ be the polynomial ring in countably many indeterminates $x_1, ..., x_n, ...$ over the field K. Show that the ideal I generated by $x_1, ..., x_n, ...$ is not finitely generated. Hence we may have a presentation $0 \rightarrow N \rightarrow P \rightarrow A \rightarrow 0$ with P finitely generated projective and N not finitely-generated. ## 5. Projective Modules over a Principal Ideal Domain Here we shall prove a rather difficult theorem about principal ideal domains. We remark that a very simple proof is available if one is content to consider only finitely generated Λ -modules; then the theorem forms a part of the fundamental classical theorem on the structure of finitely generated modules over principal ideal domains. Recall that a principal ideal domain Λ is a commutative ring without divisors of zero in which every ideal is principal, i.e. generated by