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3.4. Carry out a similar exercise to the one above, assuming o” is an isomorphism.
3.5. Use the universal property of the direct sum to show that

(A, @A)DA;=A, DA, D A4,).

3.6. Show that Z,,®Z, =%, if and only if m and n are mutually prime.
3.7. Show that the following statements about the exact sequence

0— A% A% A"—0
of A-modules are equivalent:
(1) there exists u: A"— A witho"u=1o0n A";
(i1) there exists £¢: 4 — A" with go'=10n 4';
(i) 0— Hom,(B, A)-Hom,(B, A)-*>Hom,(B, A")—0is exact for all B;
(iv) 0—Hom,(A4", C)i‘rHom,,(A, C)LHomA(A , C)—0 is exact for all C;
(v) there exists p: A”"— A such that {a/, ud: A’@ A" A.
3.8. Show that if 0— A% 4254”0 is pure and if A" is a direct sum of cyclic
groups then statement (i) above holds (see Exercise 2.7).

4. Free and Projective Modules

Let A be a A-module and let S be a subset of 4. We consider the set 4,
of all elements ae A of the form a= ) A;s where 4,e A and 4,#+0 for

seS
only a finite number of elements se S. It is trivially seen that A, is a

submodule of 4; hence it is the smallest submodule of 4 containing S.
If for the set S the submodule A, is the whole of A, we shall say that §
is a set of generators of A. If A admits a finite set of generators it is said
to be finitely generated. A set S of generators of A is called a basis of A
if every element ae A may be expressed uniguely in the form a= ) As
seS
with A,e A and A, %0 for only a finite number of elements se S. It is
readily seen that a set S of generators is a basis if and only if it is linearly
independent, that is, if ) A;s=0 implies 4,=0 for all se S. The reader
seS
should note that not every module possesses a basis.
Definition. I S is a basis of the A-module P, then P is called free on the
set S. We shall call P free if it is free on some subset.

Proposition 4.1. Suppose the A-module P is free on the set S. Then
P>~ A, where A;=A as a left module for seS. Conversely, P A,
SeS seS

is free on the set {1, ,se S}.

Proof. We define ¢: P— (P A, as follows: Every element ae P is
seS
is expressed uniquely in the forma=)_ 4,s; set p(a) = (4,),.s. Conversely,
seS
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for s € S define y : A;— P by y(4,) = 4,5 By the universal property of the

direct sum the family {y}, s€ S, gives rise to a map yp = (> : (P A,—P.
seS

It is readily seen that ¢ and y are inverse to each other. The remaining
assertion immediately follows from the construction of the direct sum. []

The next proposition yields a universal characterization of the free
module on the set §.

Proposition 4.2. Let P be free on the set S. To every A-module M and
to every function f from S into the set underlying M, there is a unigue
A-module homomorphism ¢ : P— M extending f.

Proof. Let f(s)=m,. Set @(a) = ¢ ( > lss) =Y JAm,. This obviously

seS seS

is the only homomorphism having the required property. []
Proposition 4.3. Every A-module A is a quotient of a free module P.

Proof. Let § be a set of generators of A. Let P =) A, with A,=A

SeS
and define ¢: P—A to be the extension of the function f given by
S(1,)=s. Trivially ¢ is surjective. []

Proposition 4.4. Let P be a free A-module. To every surjective homo-
morphism e: B— C of A-modules and to every homomorphism y: P—C
there exists a homomorphism fi: P— B such that e =1.

Proof. Let P be free on S. Since ¢ is surjective we can find elements
b,e B, se S with &(b,)=1v(s), se S. Define  as the extension of the func-
tion f: S— B given by f(s)=b,, seS. By the uniqueness part of Pro-
position 4.2 we conclude that ef=7. []

Toemphasize the importance of the property provedin Proposition 4.4
we make the following remark: Let A-£ B-“» C be a short exact sequence
of A-modules. If P is a free A-module Proposition 4.4 asserts that every
homomorphism y:P—C is induced by a homomorphism f:P— B.
Hence using Theorem 2.1 we can conclude that the induced sequence

0—Hom, (P, 4)-“=»Hom (P, B)-=> Hom,,(P, C)—0 (4.1)

isexact, i.e. that e, is surjective. Conversely, it is readily seen that exactness
of (4.1) for all short exact sequences 4— B—» C implies for the module
P the property asserted in Proposition 4.4 for P a free module. Therefore
there is considerable interest in the class of modules having this property.
These are by definition the projective modules:

Definition. A A-module P is projective if to every surjective homo-
morphism & : B—» C of A-modules and to every homomorphism y ; P—C
there exists a homomorphism f: P— B with ¢ 8 = . Equivalently, to any
homomorphisms ¢, y with ¢ surjective in the diagram below there exists
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B such that the triangle P
B j
B——~—»C

1s commutative.

As mentioned above, every free module is projective. We shall give
some more examples of projective modules at the end of this section.

Proposition 4.5. A direct sum (1) P, is projective if and only if each P, is.

iel

Proof. We prove the proposition only for A = P@ Q. The proofin the
general case is analogous. First assume P and Q projective. Let ¢ : B—C
be surjective and y: P @ Q— C a homomorphism. Define yp =y1,: P—C
and yy = y19: Q— C. Since P, Q are projective there exist fi,, f, such that
efp="7yp, £fg=7q- By the universal property of the direct sum there
exists f: P@Q— B such that fi1,=pp and fi15=f,. It follows that
(P ip=ePp=7vp=7y1p and (ef)1p=¢€Py =7, =71p. By the uniqueness
part of the universal property we conclude that ¢ =v. Of course, this
could be proved using the explicit construction of P@ Q, but we prefer
to emphasize the universal property of the direct sum.

Next assume that P@Q is projective. Let ¢ : B—C be a surjection
and yp: P—C a homomorphism. Choose y,: Q—C to be the zero map.
We obtain y: P®Q—C such that y1,=17yp and y15=7,=0. Since P@Q
is projective there exists i : P@® Q— B such that ¢ff = y. Finally we obtain
e(fip)=7y1p=7p. Hence B1p: P— B is the desired homomorphism. Thus P
is projective; similarly Q is projective. []

In Theorem 4.7 below we shall give a number of different characteriza-
tions of projective modules. As a preparation we define:

Definition. A short exact sequence A>*B-»C of A-modules splits if
there exists a left inverse to g, i.e. a homomorphism ¢ : C— B such that
o&=1.. The map o is then called a splitting.

We remark that the sequence A5 A@ CESC is exact, and splits
by the homomorphism 1. The following lemma shows that all split short
exact sequences of modules are of this form (see Exercise 3.7).

Lemma 4.6. Suppose that o : C— B is a splitting for the short exact
sequence A~*sB-»C. Then B is isomorphic to the direct sum A& C.
Under this isomorphism, p corresponds to 1, and a to 1.

In this case we shall say that C (like A4) is a direct summand in B.
Proof. By the universal property of the direct sum we define a map p
as follows
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Then the diagram
A2 ADCEEnC

-

AL Bt u(C

is commutative; the left hand square trivially is; the right hand square
is by epla,c)=¢elpa+oac)=0+¢ece=c, and nc(a,c)=c, ac A, ceC.
By Lemma 1.1 i is an isomorphism. []

Theorem 4.7. Fora A-module P the following statements are equivalent :

(1) P is projective;

(2) for every short exact sequence A>*sB-»C of A-modules the
induced sequence

0— Hom,(P, A\-**>Hom,(P, B)-=»Hom,(P, C)—0
is exact;
(3) if e: B—» P is surjective, then there exists a homomorphism f§ : P— B
such that efi =1p;
(4) P is a direct summand in every module of which it is a quotient;
(5) P is a direct summand in a free module.

Proof. (1)=(2). By Theorem 2.1 we only have to show exactness at
Hom,(P, €), i.e. that ¢, is surjective. But since ¢ : B— C is surjective this
is asserted by the fact that P is projective.

(2)=(3). Choose as exact sequence kere—B-*»P. The induced
sequence

0— Hom (P, ker&)— Hom (P, B)~*> Hom,(P, P)—0

is exact. Therefore there exists f: P— B such that eff =1,.

(3)=(4). Let P> B/ A, then we have an exact sequence 4~ B-»P,
By (3) there exists i : P— B such that ¢ f = 1. By Lemma 4.6 we conclude
that P is a direct summand in B.

(4)=(5). By Proposition 4.3 P is a quotient of a free module P
By (4) P is a direct summand in P

(5)=-(1). By (5) P=P®Q, where P’ is a free module Since free
modules are projective, it follows from Proposition 4.5 that P is
projective. []

Next we list some examples:

(a) If A=K, a field, then every K-module is free, hence projective.

(b) By Exercise 2.2 and (2) of Theorem 4.7, Z,, is not projective as a
module over the integers. Hence a finitely generated abelian group is
projective if and only if it is free.

(c) Let A=1Z,, the ring of integers modulo 6. Since Z,=Z,@Z,
as a Zg-module, Proposition 4.5 shows that Z, as well as Z, are projective
Z,-modules. However, they are plainly not free Z,-modules.
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Exercises:

4.1. Let V be a vector space of countable dimension over the field K. Let
A=Homg(V, V) Show that, as K-vector spaces V. is isomorphic to V@ V.
We therefore obtain

A =Homg(V, V)= Homy(V@®V, V') = Homy(V, V)@ Homg(V, V)= A®A .

Conclude that, in general, the free module on a set of n elements may be iso-
morphic to the free module on a set of m elements, with nm.

4.2. Given two projective A-modules P, Q, show that there exists a free A-module R
such that POR = Q@R is free. (Hint: Let P@ P and Q@ Q" be free. Define
R=PaQaQ1&PEPI® =0 dPOPI@QDVD )

4.3. Show that @ is not a free Z-module.

4.4. Need a direct product of projective modules be projective?

4.5. Show that if 0=N—=P—-4—0, 0->M—0—A—0 are exact with P,Q
projective, then P@® M = Q @ N. (Hint: Use Exercise 3.4.)

4.6. We say that A has a finite presentation if there is a short exact sequence
0—>N—P—A4—0 with P finitely-generated projective and N finitely-
generated. Show that

(1) if A has a finite presentation. then. for every exact sequence

0—R—S—A—0

with § finitely-generated, R is also finitely-generated:

(i) if Ahas a finite presentation, it has a finite presentation with P free;

(iii) if A has a finite presentation every presentation 0— N—P—A—0
with P projective, N finitely-generated is finite, and every presentation
0— N—P— A—0 with P finitely-generated projective is finite:

(iv) if A has a presentation 0— N;— P,— A—0 with P, finitely-generated
projective, and a presentation 0— N,— P,—A—0 with P, projective, N,
finitely-generated, then 4 has a finite presentation (indeed, both the given
presentations are finite).

4.7. Let A=K(x,,...,x,,...) be the polynomial ring in countably many in-
determinates x,, ..., X,, ... over the field K. Show that the ideal I generated

by xy, ..., X,, ... is not finitely generated. Hence we may have a presentation
0—N—P—A—0 with P finitely generated projective and N not finitely-
generated.

5. Projective Modules over a Principal Ideal Domain

Here we shall prove a rather difficult theorem about principal ideal
domains. We remark that a very simple proofis available if one is content
to consider only finitely generated A-modules; then the theorem forms
a part of the fundamental classical theorem on the structure of finitely
generated modules over principal ideal domains.

Recall that a principal ideal domain A is a commutative ring with-
out divisors of zero in which every ideal is principal, i.e. generated by



