General Schemes MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

1st November 2021

Kapil Hari Paranjape (IISER Mohali)

General Schemes

Recall

In the previous two lectures we introduced the notion of a \mathbb{Z} -scheme F of finite type and gave some examples.

- ► *F* is a sheaf functor from **CRing** to **Set** for which there is sheaf-theoretic surjection $\eta : U \to F$ where $U = A(\mathbf{x}; \mathbf{f})$ is a \mathbb{Z} -affine scheme of finite type.
- ► The kernel $E = \ker \eta$ is a \mathbb{Z} -quasi affine scheme of finite type. Note that we have a morphisms $E \to U \times U$.
- There is a decomposition U = □ⁿ_{i=1}U_i into affine schemes U_i. We then define V_{i,j} as E ∩ U_i × U_j for all i and j.
- For each *i* and *j* the morphism V_{i,j} → U_i is a (quasi-affine) open subscheme. (By reflexivity, so is V_{i,j} → U_j.)

We now generalise this a bit further.

Kapil Hari Paranjape (IISER Mohali)

General Affine Schemes

Given a commutative ring T, we have introduced a functor T from **CRing** to **Set**.

For a ring R, recall that T(R) = Hom(T, R)

We have checked that T is a sheaf functor.

Note that this does not require T to be a finitely presented ring.

Since the "dot" is hard to see, let us use Sp(T) to denote this functor. We call this an *affine* scheme.

Recall that a morphism $Sp(T) \rightarrow Sp(U)$ is given by a homomorphism of rings $U \rightarrow T$.

Closed subscheme

Given an ideal *I* in *T*, we have a homomorphism $T \to T/I$ which gives a morphism $Sp(T/I) \to Sp(T)$ of functors.

For a commutative ring R, a homomorphism $T/I \rightarrow R$ is *uniquely* determined by a homomorphism $T \rightarrow R$ such that I goes to 0 in R.

This shows that $\operatorname{Sp}(T/I) \to \operatorname{Sp}(T)$ is a subfunctor.

We say that Sp(T/I) is an *closed* subscheme of Sp(T) under this morphism.

Given ideals I and J in T, their sum I + J is also an ideal in T.

Given a ring *R*, a homomorphism $T/(I + J) \rightarrow R$ is *uniquely* determined by a homomorphism $T \rightarrow R$ for which the images of *I* and *J* are 0.

It follows that Sp(T/(I+J)) is the intersection $\text{Sp}(T/I) \cap \text{Sp}(T/J)$ in Sp(T).

Affine open subschemes

Given an element g in a commutative ring T, we have a ring homomorphism $T \to T_g$ which gives a morphism $\text{Sp}(T_g) \to \text{Sp}(T)$ of functors.

For a commutative ring R, a homomorphism $T_g \to R$ is *uniquely* determined by a homomorphism $T \to R$ such that g goes to a unit in R.

This shows that $\operatorname{Sp}(T_g) \to \operatorname{Sp}(T)$ is a subfunctor.

We say that $Sp(T_g)$ is an affine *open* subscheme of Sp(T) under this morphism.

If g and h are elements of T, then we have $Sp(T_{gh})$ as an affine open subscheme of $Sp(T_g)$ and $Sp(T_h)$.

Given a ring R, a homomorphism $T_{gh} \rightarrow R$ is *uniquely* determined by a homomorphism $T \rightarrow R$ for which the images of g and h are units.

It follows that $Sp(T_{gh})$ is the intersection $Sp(T_g) \cap Sp(T_h)$ in Sp(T).

Open Subschemes

We have the more general notion of (quasi-affine) open subscheme of an affine scheme.

This is a subfunctor, but is not, in general, an affine scheme.

Given an ideal I in the commutative ring T, we define the "complement" D_I as the subfunctor

$$D_I(R) = \{f : T \to R : f(I)R = R\}$$

This consists of homomorphisms where the image of I generates the unit ideal.

We regard $D_I \rightarrow T$ as an open subfunctor. We call it a quasi-affine scheme.

When $I = \langle g \rangle$ we see that $D_I = \text{Sp}(T_g)$.

Affine Open Cover

Let us understand the sheaf condition in terms of affine schemes. Given a ring T and elements u_1, \ldots, u_k which generate the unit ideal. We have affine open subschemes $\text{Sp}(T_{u_i})$ of Sp(T). Moreover, the morphism $\sqcup_i \text{Sp}(T_{u_i}) \to \text{Sp}(T)$ is a *sheaf-theoretic* surjection. In other words, we can think of this as an *affine open cover* of Sp(T).

Sheaf Condition re-done

Suppose that $\sqcup_i \operatorname{Sp}(T_{u_i}) \to \operatorname{Sp}(T)$ is an affine open cover (as above).

As seen above $\operatorname{Sp}(T_{u_iu_i})$ is the intersection $\operatorname{Sp}(T_{u_i}) \cap \operatorname{Sp}(T_{u_j})$ in $\operatorname{Sp}(T)$.

Given a functor F from **CRing** to **Set**, the sheaf condition for F(T) can be written as follows.

Sheaf Condition in terms of affine open cover: Given $f_i : \text{Sp}(T_{u_i}) \to F$ for i = 1, ..., k such that f_i and f_j agree on the intersection $\text{Sp}(T_{u_iu_j})$, there is a *unique* $f : \text{Sp}(T) \to F$ that restricts to f_i on $\text{Sp}(T_{u_i})$.

This looks very similar to the sheaf condition for continuous maps from a topological space T to a topological space F.

Kapil Hari Paranjape (IISER Mohali)

A General Scheme

Informally, a *scheme* is a sheaf functor F which is a quotient of $\bigsqcup_i \operatorname{Sp}(T^{(i)})$ (a collection of affine schemes) by an equivalence relation of the form $\bigsqcup_{i,j} V^{(i,j)}$ (a collection of quasi-affine schemes) where each $V^{(i,j)}$ is an open subscheme of $\operatorname{Sp}(R^{(i)})$.

Note that the collections need not be finite.

More precisely, we are given:

- An indexed collection {U_i = Sp(R⁽ⁱ⁾)}_{i∈I} of affine schemes. This gives U = ⊔_{i∈I}U_i.
- An equivalence relation E ⊂ U × U. This gives us V_{i,j} as the intersection E ∩ U_i × U_j.
- ► The projection π₁ : V^(ij) → U_i identifies this as a quasi-affine open subscheme. (It follows that the same is true for π₂ : V^(ij) → Sp(R^(j)).)

F is the quotient U/E and we say F is the scheme obtained by patching U_i along $V_{i,j}$ Kapil Hari Parahjape (IISER Mohali)General Schemes1st November 202111/14

A pathological example

We take $U = U_1 \sqcup U_2$ where $U_i \cong \mathbb{A}^n$ for i = 1, 2.

We define $V_{1,1}$ and $V_{2,2}$ to be the diagonal inclusions.

We define $V_{1,2}$ to be the inclusion on $\mathbb{A}^n \setminus \{(0, \dots, 0)\}$ in *both* factors. Similarly, $V_{2,1}$.

It follows that this gives us an equivalence relation on U.

The quotient sheaf F consists of two copies of \mathbb{A}^n joined along the complement of the origin. A strange space to study!

Separated schemes

In order to avoid such pathologies, we can impose the requirement that $V_{i,j}$ is a *closed* subscheme of $U_i \times U_j$ for each *i* and *j*.

In our construction of quasi-projective schemes we can see that this condition is satisfied.

Note that, this *implies* that $V_{i,j}$ is affine. So $V_{i,j} = \text{Sp}(S^{(i,j)})$ for some commutative ring $S^{(i,j)}$.

So a *separated* scheme is of the form:

- An indexed collection $\{U_i = \operatorname{Sp}(R^{(i)})\}_{i \in I}$ of affine schemes.
- An indexed collection {V_{i,j} = Sp(S^(i,j))}_{(i,j)∈I×I} of closed subschemes contained in U_i × U_j
- This gives $U = \bigsqcup_{i \in I} U_i$, and $E = \bigsqcup_{(i,j) \in I \times I} V_{i,j}$, and an inclusion $E \to U \times U$.
- The combined morphism *E* gives an equivalence relation on the functor *U*.
- $\pi_1: V_{i,j} \rightarrow U_i$ identifies this as an open subscheme.