Projective Schemes
 MTH437 - Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali
28th October 2021

Recall

In the previous two lecture we introduced the notion of a \mathbb{Z}-scheme F (of finite type) via patching or as a quotient.

- F is a sheaf functor from CRing to Set for which there is sheaf-theoretic surjection $\eta: U \rightarrow F$ where $U=A(\mathbf{x} ; \mathbf{f})$ is a \mathbb{Z}-affine scheme of finite type.
- The kernel $E=\operatorname{ker} \eta$ is also \mathbb{Z}-affine scheme of finite type. Note that we have a morphisms $E \rightarrow U \times U$.
- There are decompositions $U=\sqcup_{i=1}^{n} U_{i}$ and $E=\sqcup_{i, j=1}^{n} V_{i, j}$ into affine schemes so that $E \rightarrow U \times U$ is restricts to $V_{i, j} \rightarrow U_{i} \times U_{j}$ for all i and j.
- For each i and j the morphism $V_{i, j} \rightarrow U_{i}$ is an affine open subscheme. (By reflexivity, so is $V_{i, j} \rightarrow U_{j}$.)

Warning: The earlier version of these slides and the lecture was in error.

Note that F is the sheaf quotient U / E by the equivalence relation $E \rightrightarrows U$. Hence, we can also give the alternative description of schemes as follows.

- We are given \mathbb{Z}-affine schemes $U=\sqcup_{i=1}^{n} U_{i}$ and $E=\sqcup_{i, j=1}^{n} V_{i, j}$.
- There is a morphism $E \rightarrow U \times U$ that makes $E(R)$ an equivalence relation on $U(R)$ for each ring R. This morphism restricts to morphisms $V_{i, j} \rightarrow U_{i} \times U_{j}$ for each i and j.
- For each i and j the morphisms $V_{i, j} \rightarrow U_{i}$ is an affine open subscheme. (By reflexivity, so is $V_{i, j} \rightarrow U_{j}$.)

Warning: The earlier version of these slides and the lecture was in error. In this case F is defined as the sheaf quotient U / E.

We now give some important examples of schemes.

Projective space

Recall the notion of projective space $\mathbb{P}^{n}(k)$ over a field k.
It is defined as the quotient of $k^{n+1} \backslash\{(0, \ldots, 0)\}$ by the equivalence relation

$$
\left(a_{0}, \ldots, a_{n}\right) \sim\left(u a_{0}, \ldots, u a_{n}\right) \text { where } u \neq 0
$$

In order to generalise this definition to arbitrary rings, we need to resolve the following issues:

- $\mathbb{A}^{n+1} \backslash\{(0, \ldots, 0)\}$ is a quasi-affine scheme and not an affine scheme for $n>0$.
- The equivalence classes are not discrete/finite.

The first problem can be resolved (partially) by writing $\mathbb{A}^{n+1} \backslash\{(0, \ldots, 0)\}$ as the sheaf-theoretic union of $X_{i}=A\left(x_{0}, \ldots, x_{n}, y_{i} ; x_{i} y_{i}-1\right)$ which is the open subscheme of \mathbb{A}^{n+1} where x_{i} is a unit.

In other words, we have a surjection of sheaf functors

$$
\sqcup_{i=0}^{n} X_{i} \rightarrow \mathbb{A}^{n+1} \backslash\{(0, \ldots, 0)\}
$$

Note that the equivalence relation associated to this surjection is the disjoint union of $X_{i, j}=A\left(\mathbf{x}, y_{i}, y_{j} ; x_{i} y_{i}-1, x_{j} y_{j}-1\right)$ over all i and j.

However, we also need to quotient by the equivalence relation associated with

$$
\left(a_{0}, \ldots, a_{n}\right) \sim\left(u a_{0}, \ldots, u a_{n}\right) \text { where } u \text { is a unit }
$$

Note that in X_{i}, the function x_{i} is a unit.
Thus, $U_{i}=A\left(\mathbf{x} ; x_{i}-1\right)$ is a closed subscheme of X_{i} that "slices" each equivalence class. Note that $U_{i} \cong \mathbb{A}^{n}$.

Since we do not want to slice twice, we take

$$
U_{i, j}=A\left(x_{0}, \ldots, x_{n}, y_{j} ; x_{i}-1, x_{j} y_{j}-1\right)
$$

This is the affine open subscheme of U_{i} where x_{j} is a unit.
The morphism $U_{i, j} \rightarrow U_{j}$ is given by

$$
\left(x_{0}, \ldots, x_{n}, y_{j}\right) \mapsto\left(y_{j} x_{0}, \ldots, y_{j} x_{n}\right)
$$

Note that $y_{j} x_{j}=1$ on the right-hand side.
This morphism identifies $U_{i, j}$ with the affine open subset of U_{j} where $x_{i}=y_{j}$ is a unit.

In other words, $U_{i, j}(R)$ as a subset of $U_{i}(R) \times U_{j}(R)$ consists of pairs of tuples $\left(\left(a_{0}, \ldots, a_{n}\right),\left(b_{0}, \ldots, b_{n}\right)\right)$ such that:

- $a_{i}=1$ and $b_{j}=1$
- a_{j} and b_{i} are units such that $a_{j} b_{i}=1$
- $b_{i} a_{k}=b_{k}$ and (equivalently) $a_{j} b_{k}=a_{k}$ for $k=0, \ldots, n$

It follows that $E=\sqcup_{i, j=1}^{n} U_{i, j}$ gives an equivalence relation on $U=\sqcup_{i=0}^{n} U_{i}$.
The scheme \mathbb{P}^{n} is defined as the quotient U / E.

Closed subscheme of \mathbb{P}^{n}

We now introduce a closed subscheme of \mathbb{P}^{n} as the locus where a collection f_{1}, \ldots, f_{m} of homogeneous polynomials vanish.

This subscheme will be denoted as $P(\mathbf{x} ; \mathbf{f})=P\left(x_{0}, \ldots, x_{n} ; f_{1}, \ldots, f_{m}\right)$.
We can define

$$
V_{i} \cap P(\mathbf{x} ; \mathbf{f})=V_{i}=A\left(x_{0}, \ldots, x_{i}, \ldots, x_{n} ; x_{i}-1, f_{1}, \ldots, f_{m}\right)
$$

This is an affine scheme.

Recall that $U_{i, j}(R)$ as a subset of $U_{i}(R) \times U_{j}(R)$ consists of pairs of tuples $\left(\left(a_{0}, \ldots, a_{n}\right),\left(b_{0}, \ldots, b_{n}\right)\right)$ such that:

- $a_{i}=1$ and $b_{j}=1$
- a_{j} and b_{i} are units such that $a_{j} b_{i}=1$
- $b_{i} a_{k}=b_{k}$ and (equivalently) $a_{j} b_{k}=a_{k}$ for $k=0, \ldots, n$

We calculate:

$$
\begin{array}{ll}
f_{r}\left(a_{0}, \ldots, a_{n}\right) & \\
=f_{r}\left(a_{j} b_{0}, \ldots, a_{j} b_{n}\right) & \text { (since } \left.a_{k}=a_{j} b_{k}\right) \\
=a_{j}^{d_{r}} f_{r}\left(b_{0}, \ldots, b_{n}\right) & \text { (since } f_{r} \text { is homogeneous) }
\end{array}
$$

where d_{r} is the degree of f_{r}.
Since a_{j} is a unit in R, we see that $f_{r}(\mathbf{a})=0$ if and only if $f_{r}(\mathbf{b})=0$.

This shows that the following intersections are equal inside $U_{i}(R) \times U_{j}(R)$

$$
\begin{aligned}
& U_{i, j}(R) \cap\left(V_{i}(R) \times V_{j}(R)\right) \\
& =U_{i, j}(R) \cap\left(U_{i}(R) \times V_{j}(R)\right) \\
& =U_{i, j}(R) \cap\left(V_{i}(R) \times U_{j}(R)\right)
\end{aligned}
$$

We call these intersections $V_{i, j}$.
Now define $V=\sqcup_{i=1}^{n} V_{i}$ and $E_{V}=\sqcup_{i, j=1}^{n} V_{i, j}$ with the natural pair of morphisms $E_{V} \rightrightarrows V$.

The above discussion shows that $V_{i, j} \rightarrow V_{i}$ is the affine open set where x_{j} is a unit.

Thus, the conditions for $E_{V} \rightrightarrows V$ to have scheme as its sheaf quotient are satisfied.

The projective scheme $P(\mathbf{x} ; \mathbf{f})$ is the sheaf quotient V / E_{V}.

Quasi-projective schemes

This can be further extended to the notion of a quasi-projective scheme

$$
P\left(x_{0}, \ldots, x_{n} ; f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{\ell}\right)
$$

where $f_{1}, \ldots, f_{m}, g_{1}, \ldots, g_{\ell}$ are homogeneous polynomials.
This is the locus inside $P\left(x_{0}, \ldots, x_{n} ; f_{1}, \ldots, f_{m}\right)$ where g_{1}, \ldots, g_{ℓ} generate the unit ideal.

We define $W_{s, i}=A\left(x_{0}, \ldots, x_{n}, v_{s} ; x_{i}-1, f_{1}, \ldots, f_{m}, v_{s} g_{s}-1\right)$.
Note that for a point (\mathbf{a}, \mathbf{b}) in $U_{i, j}(R)$, the value of $g_{s}(\mathbf{a})$ is a unit multiple of $g_{s}(\mathbf{b})$ for all $s=1, \ldots, \ell$.

In particular, the condition that g_{s} is a unit is independent of whether we are looking at the point in U_{i} or in U_{j}.

We now take $W_{(s, i),(r, j)}(R)$ to be $U_{i, j}(R) \cap W_{s, i}(R) \times W_{r, j}(R)$ inside $U_{i}(R) \times U_{j}(R)$.

From the above discussion, we see that $E_{W}=\sqcup_{s, i, r, j} W_{(s, i),(r, j)}$ is a \mathbb{Z}-affine scheme which is an affine open subscheme of $W=\sqcup_{s, i} W_{s, i}$ under either projection.

Moreover, one checks as above that $E_{W} \rightrightarrows W$ is an equivalence relation. The quasi-projective scheme $P\left(x_{0}, \ldots, x_{n} ; f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{\ell}\right)$ is the sheaf quotient W / E_{W}.

