Projective Schemes MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

28th October 2021

Kapil Hari Paranjape (IISER Mohali)

Recall

In the previous two lecture we introduced the notion of a \mathbb{Z} -scheme F (of finite type) via patching or as a quotient.

- ► *F* is a sheaf functor from **CRing** to **Set** for which there is sheaf-theoretic surjection $\eta : U \to F$ where $U = A(\mathbf{x}; \mathbf{f})$ is a \mathbb{Z} -affine scheme of finite type.
- ► The kernel $E = \ker \eta$ is also \mathbb{Z} -affine scheme of finite type. Note that we have a morphisms $E \to U \times U$.
- There are decompositions U = □ⁿ_{i=1}U_i and E = □ⁿ_{i,j=1}V_{i,j} into affine schemes so that E → U × U is restricts to V_{i,j} → U_i × U_j for all i and j.
- For each *i* and *j* the morphism V_{i,j} → U_i is an affine open subscheme. (By reflexivity, so is V_{i,j} → U_j.)

Warning: The earlier version of these slides and the lecture was in error.

Note that *F* is the *sheaf quotient* U/E by the equivalence relation $E \Rightarrow U$. Hence, we can also give the alternative description of schemes as follows.

- ▶ We are given \mathbb{Z} -affine schemes $U = \bigsqcup_{i=1}^{n} U_i$ and $E = \bigsqcup_{i,j=1}^{n} V_{i,j}$.
- ► There is a morphism E → U × U that makes E(R) an equivalence relation on U(R) for each ring R. This morphism restricts to morphisms V_{i,j} → U_i × U_j for each i and j.
- For each i and j the morphisms V_{i,j} → U_i is an affine open subscheme. (By reflexivity, so is V_{i,j} → U_j.)

Warning: The earlier version of these slides and the lecture was in error.

In this case F is *defined* as the sheaf quotient U/E.

We now give some important examples of schemes.

Kapil Hari Paranjape (IISER Mohali)

Projective space

Recall the notion of projective space $\mathbb{P}^n(k)$ over a field k.

It is defined as the quotient of $k^{n+1} \setminus \{(0, \ldots, 0)\}$ by the equivalence relation

$$(a_0,\ldots,a_n)\sim(ua_0,\ldots,ua_n)$$
 where $u\neq 0$

In order to generalise this definition to arbitrary rings, we need to resolve the following issues:

- ▲ⁿ⁺¹ \ {(0,...,0)} is a quasi-affine scheme and not an affine scheme for n > 0.
- ► The equivalence classes are *not* discrete/finite.

The first problem can be resolved (partially) by writing $\mathbb{A}^{n+1} \setminus \{(0, \dots, 0)\}$ as the sheaf-theoretic union of $X_i = A(x_0, \dots, x_n, y_i; x_iy_i - 1)$ which is the open subscheme of \mathbb{A}^{n+1} where x_i is a unit.

In other words, we have a surjection of sheaf functors

 $\sqcup_{i=0}^{n} X_{i} \rightarrow \mathbb{A}^{n+1} \setminus \{(0,\ldots,0)\}$

Note that the equivalence relation associated to *this surjection* is the disjoint union of $X_{i,j} = A(\mathbf{x}, y_i, y_j; x_iy_i - 1, x_jy_j - 1)$ over all *i* and *j*.

However, we *also* need to quotient by the equivalence relation associated with

 $(a_0,\ldots,a_n)\sim(ua_0,\ldots,ua_n)$ where u is a unit

Kapil Hari Paranjape (IISER Mohali)

Note that in X_i , the function x_i is a unit.

Thus, $U_i = A(\mathbf{x}; x_i - 1)$ is a closed subscheme of X_i that "slices" each equivalence class. Note that $U_i \cong \mathbb{A}^n$.

Since we do not want to slice twice, we take

$$U_{i,j} = A(x_0, \ldots, x_n, y_j; x_i - 1, x_j y_j - 1)$$

This is the affine open subscheme of U_i where x_j is a unit.

The morphism $U_{i,j} \rightarrow U_j$ is given by

$$(x_0,\ldots,x_n,y_j)\mapsto (y_jx_0,\ldots,y_jx_n)$$

Note that $y_j x_j = 1$ on the right-hand side.

This morphism identifies $U_{i,j}$ with the affine open subset of U_j where $x_i = y_i$ is a unit.

Kapil Hari Paranjape (IISER Mohali)

In other words, $U_{i,j}(R)$ as a *subset* of $U_i(R) \times U_j(R)$ consists of pairs of tuples $((a_0, \ldots, a_n), (b_0, \ldots, b_n))$ such that:

- \blacktriangleright $a_i = 1$ and $b_j = 1$
- a_j and b_i are units such that $a_j b_i = 1$
- $b_i a_k = b_k$ and (equivalently) $a_j b_k = a_k$ for k = 0, ..., n

It follows that $E = \bigsqcup_{i,j=1}^{n} U_{i,j}$ gives an equivalence relation on $U = \bigsqcup_{i=0}^{n} U_i$.

The scheme \mathbb{P}^n is defined as the quotient U/E.

Closed subscheme of \mathbb{P}^n

We now introduce a closed subscheme of \mathbb{P}^n as the locus where a collection f_1, \ldots, f_m of *homogeneous* polynomials vanish.

This subscheme will be denoted as $P(\mathbf{x}; \mathbf{f}) = P(x_0, \dots, x_n; f_1, \dots, f_m)$. We can define

$$V_i \cap P(\mathbf{x}; \mathbf{f}) = V_i = A(x_0, \ldots, x_i, \ldots, x_n; x_i - 1, f_1, \ldots, f_m)$$

This is an affine scheme.

Kapil Hari Paranjape (IISER Mohali)

Recall that $U_{i,j}(R)$ as a *subset* of $U_i(R) \times U_j(R)$ consists of pairs of tuples $((a_0, \ldots, a_n), (b_0, \ldots, b_n))$ such that:

•
$$a_i = 1$$
 and $b_j = 1$

• a_j and b_i are units such that $a_j b_i = 1$

• $b_i a_k = b_k$ and (equivalently) $a_j b_k = a_k$ for k = 0, ..., n

We calculate:

$$\begin{aligned} f_r(a_0, \dots, a_n) \\ &= f_r(a_j b_0, \dots, a_j b_n) \\ &= a_j^{d_r} f_r(b_0, \dots, b_n) \end{aligned} (since $a_k = a_j b_k$) (since f_r is homogeneous)$$

where d_r is the degree of f_r .

Since a_i is a unit in R, we see that $f_r(\mathbf{a}) = 0$ if and only if $f_r(\mathbf{b}) = 0$.

This shows that the following intersections are equal inside $U_i(R) \times U_i(R)$

 $U_{i,j}(R) \cap (V_i(R) \times V_j(R))$ = $U_{i,j}(R) \cap (U_i(R) \times V_j(R))$ = $U_{i,j}(R) \cap (V_i(R) \times U_j(R))$

We call these intersections $V_{i,j}$.

Now define $V = \bigsqcup_{i=1}^{n} V_i$ and $E_V = \bigsqcup_{i,j=1}^{n} V_{i,j}$ with the natural pair of morphisms $E_V \rightrightarrows V$.

The above discussion shows that $V_{i,j} \rightarrow V_i$ is the affine open set where x_j is a unit.

Thus, the conditions for $E_V \rightrightarrows V$ to have scheme as its sheaf quotient are satisfied.

The projective scheme $P(\mathbf{x}; \mathbf{f})$ is the sheaf quotient V/E_V .

Kapil Hari Paranjape (IISER Mohali)

Quasi-projective schemes

This can be further extended to the notion of a quasi-projective scheme

$$P(x_0,\ldots,x_n;f_1,\ldots,f_m;g_1,\ldots,g_\ell)$$

where $f_1, \ldots, f_m, g_1, \ldots, g_\ell$ are homogeneous polynomials.

This is the locus inside $P(x_0, \ldots, x_n; f_1, \ldots, f_m)$ where g_1, \ldots, g_ℓ generate the unit ideal.

We define
$$W_{s,i} = A(x_0, ..., x_n, v_s; x_i - 1, f_1, ..., f_m, v_s g_s - 1).$$

Note that for a point (\mathbf{a}, \mathbf{b}) in $U_{i,j}(R)$, the value of $g_s(\mathbf{a})$ is a unit multiple of $g_s(\mathbf{b})$ for all $s = 1, \ldots, \ell$.

In particular, the condition that g_s is a unit is independent of whether we are looking at the point in U_i or in U_j .

Kapil Hari Paranjape (IISER Mohali)

We now take $W_{(s,i),(r,j)}(R)$ to be $U_{i,j}(R) \cap W_{s,i}(R) \times W_{r,j}(R)$ inside $U_i(R) \times U_j(R)$.

From the above discussion, we see that $E_W = \bigsqcup_{s,i,r,j} W_{(s,i),(r,j)}$ is a \mathbb{Z} -affine scheme which is an affine open subscheme of $W = \bigsqcup_{s,i} W_{s,i}$ under either projection.

Moreover, one checks as above that $E_W \rightrightarrows W$ is an equivalence relation.

The quasi-projective scheme $P(x_0, \ldots, x_n; f_1, \ldots, f_m; g_1, \ldots, g_\ell)$ is the sheaf quotient W/E_W .