Flip Session 10 MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

26th October 2021

Kapil Hari Paranjape (IISER Mohali)

Gopal

Due to some error the original handwritten file from the session got lost. The following is reproduced to the best of my recollection!

Please explain the remark in Quiz 4 that the \mathbb{R}_{\cdot} represents the sheaf of continuous functions on X.

Question 10 in Quiz 4 tries to justify that there is a sheaf representing continuous maps to a space Y.

This is based on the following ideas:

- If U = ∪_iU_i, then a (set) map s : U → Y is determined once we are given s_i = s_{|Ui}.
- Conversely, given $s_i : U_i \to Y$ that agree on the overlaps $U_i \cap U_j$, there is such a set map.
- The notion of continuity of a map is *local*. In other words, s is continuous if and only if each s_i is continuous.

The remark just applies this to the topological space $Y = \mathbb{R}$.

Kapil Hari Paranjape (IISER Mohali)

Flip Session 10

In fact, the above discussion makes it clear that *any* property of functions that is *local* gives rise to a sheaf!

For example:

- Differentiability is local
- Holomorphicity is local

This is one reason why sheaves are useful in differential geometry as well.