Kernel, image and exactness MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

25th October 2021

Kapil Hari Paranjape (IISER Mohali)

Kernel, image and exactness

25th October 2021 1 / 17

In the previous lecture we showed how $\mathbb{Z}\mbox{-}affine$ schemes can be patched to give a sheaf functor.

Strictly speaking, what we have been calling a \mathbb{Z} -affine scheme is actually a \mathbb{Z} -affine scheme of finite type.

A \mathbb{Z} -scheme of finite type is a sheaf functor obtained by patching from \mathbb{Z} -affine schemes of finite type as described in the previous lecture.

We now provide a slightly different description of this process of patching using the notion of kernel, image and exactness for sheaf functors.

Kernel equivalence relation is a sheaf

Given a morphism $\eta: F \to G$ of sheaf functors **CRing** to **Set**, we have defined

 $E(R) = \{(f, f') \in F(R) : \eta_R(f) = \eta_R(f') \text{ in } G(R)\}$

This gives a functor *E* from **CRing** to **Set** with *two* natural transformations $\pi_i : E \to F$ for i = 1, 2 corresponding to the two projections.

We can think of E(R) as the "set-theoretic" kernel (or kernel pair) of η_R . We also denote the functor E as ker η .

Let us check that *E* is a sheaf. Note that $E \subset F \times F$ and the latter *is* a sheaf.

Kapil Hari Paranjape (IISER Mohali)

Given a ring R and elements u_1, \ldots, u_k generating the unit ideal in R. Suppose (f_i, f'_i) are elements of $E(R_{u_i})$.

The patching condition says that (f_i, f'_i) gives the same element as (f_j, f'_j) in $E(R_{u_iu_j}) \subset F(R_{u_iu_j})^2$.

There are unique elements f and f' in F(R) which map to f_i and f'_i (respectively) in $F(R_{u_i})$.

Let g (respectively g') be the image of f (respectively f') in G(R).

In order to show that (f, f') lies in E(R), we wish to show that g = g'.

By assumption the image g_i of g in $G(R_{u_i})$ is also the image of f_i . Similarly, the image g'_i of g' is also the image of f'_i .

Since (f_i, f'_i) lies in $E(R_{u_i})$ we see that $g_i = g'_i$ in $G(R_{u_i})$.

By the sheaf property of G, we see that g = g' is the *unique* element patching the tuple $(g_i) = (g'_i)$.

This shows that (f, f') is in E(R) as required. Hence ker η is a sheaf.

Image of a morphism of sheaves

- Given a natural transformation (morphism) $\eta: F \to G$ of sheaf functors from **CRing** to **Set** what is the *image* sheaf im η ?
- Naively, one might take the image of $\eta_R : F(R) \to G(R)$ for every ring R.
- However, our examples from patching show that more refined approach is required!

Recall how $\mathbb{A}^2 \setminus \{(0,0)\}$ is written as the sheaf-theoretic union of $U_1 = A(x, y, u; ux - 1)$ and $U_2 = A(x, y, v; vy - 1)$ in \mathbb{A}^2 .

In this case, an *R*-point of $\mathbb{A}^2 \setminus \{(0,0)\}\$ is a pair (a,b) in \mathbb{R}^2 such that $\langle a,b \rangle = \mathbb{R}$ is the unit ideal in \mathbb{R} .

It need not be the case that a or b is a unit in R.

What we do have is that (a, b) gives an R_a -point of U_1 and an R_b -point of U_2 .

This is how we express $\mathbb{A}^2 \setminus \{(0,0)\}$ as the *image* of $U_1 \sqcup U_2 \to \mathbb{A}^2$.

Kapil Hari Paranjape (IISER Mohali)

Kernel, image and exactness

This suggests that we declare the *sheaf-theoretic image* im η of a morphism $\eta: F \to G$ of sheaves as follows.

im $\eta(R)$ consists of R-points $g \in G(R)$ such that there are elements u_1, \ldots, u_k of R generating the unit ideal in it and points $f_i \in F(R_{u_i})$ such that the image of f_i in $G(R_{u_i})$ is the same as the image of g, for $i = 1, \ldots, k$.

Conversely, given $f_i \in F(R_{u_i})$, suppose that $g_{i,j}$ is the image in $G(R_{u_iu_j})$ under the composite $F(R_{u_i}) \to G(R_{u_i}) \to G(R_{u_iu_j})$.

If $g_{i,j} = g_{j,i}$ for all *i* and *j*, then the images $g_i \in G(R_{u_i})$ satisfy the patching condition for an *R*-point of the sheaf *G*.

Hence, there is a *unique* element $g \in G(R)$ which gives g_i in $G(R_{u_i})$.

We say that the morphism η is *onto* or *surjective* if im $\eta = G$. In other words, for *every* $g \in G(R)$:

There are elements u_1, \ldots, u_k of R generating the unit ideal in it and points $f_i \in F(R_{u_i})$ such that the image of f_i in $G(R_{u_i})$ is the same as the image of g, for $i = 1, \ldots, k$.

This is the condition for η to be *onto*.

Sheaf quotient by an equivalence relation

Given a sheaf F and a sheaf equvalence relation $E \subset F \times F$ as above, one can construct the sheaf quotient F/E in a manner similar to the previous lecture.

Given a ring R patching data (\mathbf{u}, \mathbf{f}) for an element of (F/E)(R) are given as follows:

- We have u_1, \ldots, u_k elements of R that generate the unit ideal in R.
- We have elements f_i in $F(R_{u_i})$ for each *i*.
- The pair (f_i, f_j) lies in $E(R_{u_i u_j})$ for each *i* and *j*.

We wish to define (F/E)(R) as the quotient of patching data under an equivalence as defined below.

Kapil Hari Paranjape (IISER Mohali)

Given another set of elements v_1, \ldots, v_m in R such that $\langle v_1, \ldots, v_m \rangle = R$, we note that if we define $w_{i,j} = u_i v_j$, then the collection of $w_{i,j}$ also generate the unit ideal in R.

Let $f'_{i,j}$ be the image of f_i via the set map $F(R_{u_i}) \to F(R_{w_{i,j}})$.

We say that (w,f^\prime) is a refinement of the patching data (u,f) using the tuple v.

Given two patching data (\mathbf{u}, \mathbf{f}) and (\mathbf{v}, \mathbf{g}) we can form:

- the refinement $(\mathbf{w}, \mathbf{f}')$ of (\mathbf{u}, \mathbf{f}) using the tuple \mathbf{v} .
- the refinement $(\mathbf{w}, \mathbf{g}')$ of (\mathbf{v}, \mathbf{g}) using the tuple \mathbf{u} .

Note that $w_{i,j} = u_i v_j$ are the same in both refinements.

We declare $(\mathbf{u}, \mathbf{f}) \sim (\mathbf{v}, \mathbf{g})$ if $(f'_{i,j}, g'_{i,j})$ lie in $E(R_{w_{i,j}})$ for all *i* and *j*.

Exactness

- Given a natural transformation $\eta: F \to G$
- There is an *image* sheaf im η with a factoring of η as $F \to \operatorname{im} \eta \to G$.
- ► There is a *kernel pair* sheaf ker η with a pair of morphisms ker $\eta \rightrightarrows F$ which gives an equivalence relation on F(R) for each ring R.

The *quotient* by the equivalence relation can be constructed as was done above.

One checks that the quotient of *F* by ker η is *precisely* im η .

Kapil Hari Paranjape (IISER Mohali)

Kernel, image and exactness

Affine open cover

Given a \mathbb{Z} -affine scheme $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$, we have defined an affine open subscheme to be a subscheme given by $X_g = A(x_1, \ldots, x_p, v; f_1, \ldots, f_q, vg - 1)$ for some g.

If g and g' are polynomials in x_1, \ldots, x_p , that are equal in $\mathcal{O}(X)$, then it is clear that $X_g = X_{g'}$ in a natural way.

Hence, by abuse of notation, we consider g as an element of $\mathcal{O}(X)$.

Given a collection (g_i) of elements of $\mathcal{O}(X)$, the disjoint union $\sqcup_i X_{g_i}$ is called an *affine open cover* of X.

When there are finitely many *i* (as is usually the case), we have seen that $\bigsqcup_i X_{g_i}$ is also a \mathbb{Z} -affine scheme.

Kapil Hari Paranjape (IISER Mohali)

Kernel, image and exactness

Scheme as a Quotient

As seen in the lecture on patching, a scheme F is a quotient of a \mathbb{Z} -affine scheme.

In other words, we are given an *onto* morphism $\eta: X \to F$ of sheaf functors where X is a \mathbb{Z} -affine scheme.

In that case, *F* is the *quotient* of the \mathbb{Z} -affine scheme *X* by the equivalence relation $E = \ker \eta$.

For F to be a scheme, we require some *additional* conditions on E.

- 1. *E* should itself be a \mathbb{Z} -affine scheme.
- 2. $E \Rightarrow X$ is an affine open cover (under both morphisms).

Warning: The above two *conditions* are necessary *but not sufficient* for this to be the description of a scheme.

This was an error in the previous version of the slides and in the lecture!

The *additional* condition required is that $E = \bigsqcup_{i,j=1}^{n} V_{i,j}$ and $X = \bigsqcup_{i=1}^{n} U_i$ so that the morphism $E \to X \times X$ is made up of $V_{i,j} \to U_i \times U_j$.

Kapil Hari Paranjape (IISER Mohali)

Kernel, image and exactness

25th October 2021 17 / 17