Idempotents

Match each ring below with the number of idempotents in it. (Hint: You can use algebra or geometry!)

1. $\mathcal{O}(X)$ where $X=A(x, y ; x y)$
2. $\{0\}$, the zero ring
3. $\mathcal{O}(X)$ where $X=A(x ; x(x-1))$
4. $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$, the polynomial ring in p variables for some non-negative integer p
5. $\mathcal{O}(X)$ where $X=A(w, x, y ; x y, w(x+y)-1)$

In general, if we can write the ring R as $R=R_{1} \oplus \cdots \oplus R_{k}$ as a ring then there are 2^{k} idempotents corresponding to taking the element 0 or 1 in each factor; here we are assuming that R_{i} is not the zero ring for any i.

1. The ring $\mathbb{Z}[x, y] /\langle x y\rangle$ has no idempotents other than 0 and 1 . Thus there are 2 idempotents.
2. The zero $\{0\}$ has only one element and it is an idempotent. (Strangely, this also corresponds to $k=0$ in the above formula!)
3. The ring $\mathbb{Z}[x] /\langle x(x-1)\rangle$ is also the sum $[Z][x] /\langle x\rangle \oplus \mathbb{Z}[x] /\langle x-1\rangle$ so it is $2^{2}=4$ idempotents. These are $0,1, x$ and $1-x$.
4. The polynomial ring $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ has no idempotents other than 0 and 1 . Thus there are 2 idempotents.
5. In the ring $\mathbb{Z}[w, x, y] /\langle x y, w(x+y)-1\rangle$ the elements $x w$ and $y w$ are nonzero idempotents that add up to 1 . In fact, one checks that this is the same ring as $\mathbb{Z}[x, u] /\langle u x-1\rangle \oplus \mathbb{Z}[y, v] /\langle v y-1\rangle$. Thus, there are 4 idempotents.
Geometrically, we can argue follows:
6. This case is a pair of intersecting lines so it cannot be written as a disjoint union of two schemes.
7. This is the empty scheme. So it is special!
8. This is a pair of distinct points so it can be written as a disjoint union of the points.
9. The affine space \mathbb{A}^{p} cannot be written as a disjoint union of two schemes.
10. This is a pair of intersecting lines with the point of intersection removed. So it can be written as a disjoint union of two schemes.
