Idempotents

Match each ring below with the number of idempotents in it. (Hint: You can use algebra or geometry!)

- 1. $\mathcal{O}(X)$ where X = A(x, y; xy)
- 2. $\{0\}$, the zero ring
- 3. $\mathcal{O}(X)$ where X = A(x; x(x-1))
- 4. $\mathbb{Z}[x_1, \ldots, x_p]$, the polynomial ring in p variables for some non-negative integer p
- 5. $\mathcal{O}(X)$ where X = A(w, x, y; xy, w(x+y) 1)

In general, if we can write the ring R as $R = R_1 \oplus \cdots \oplus R_k$ as a ring then there are 2^k idempotents corresponding to taking the element 0 or 1 in each factor; here we are assuming that R_i is not the zero ring for any *i*.

- 1. The ring $\mathbb{Z}[x, y]/\langle xy \rangle$ has no idempotents other than 0 and 1. Thus there are 2 idempotents.
- 2. The zero $\{0\}$ has only one element and it is an idempotent. (Strangely, this also corresponds to k = 0 in the above formula!)
- 3. The ring $\mathbb{Z}[x]/\langle x(x-1)\rangle$ is also the sum $[Z][x]/\langle x\rangle \oplus \mathbb{Z}[x]/\langle x-1\rangle$ so it is $2^2 = 4$ idempotents. These are 0, 1, x and 1-x.
- 4. The polynomial ring $\mathbb{Z}[x_1, \ldots, x_p]$ has no idempotents other than 0 and 1. Thus there are 2 idempotents.
- 5. In the ring $\mathbb{Z}[w, x, y]/\langle xy, w(x+y) 1 \rangle$ the elements xw and yw are nonzero idempotents that add up to 1. In fact, one checks that this is the same ring as $\mathbb{Z}[x, u]/\langle ux - 1 \rangle \oplus \mathbb{Z}[y, v]/\langle vy - 1 \rangle$. Thus, there are 4 idempotents.

Geometrically, we can argue follows:

- 1. This case is a pair of *intersecting* lines so it cannot be written as a *disjoint* union of two schemes.
- 2. This is the empty scheme. So it is special!
- 3. This is a pair of *distinct* points so it can be written as a disjoint union of the points.
- 4. The affine space \mathbb{A}^p cannot be written as a disjoint union of two schemes.
- 5. This is a pair of intersecting lines with the point of intersection *removed*. So it *can* be written as a disjoint union of two schemes.