Sheaves as local homemorphisms

Given a topological space X, let X’ be defined as:
¢ Objects are open sets U in X.

o Given open sets U and V, the set Mor(U, V) is a singleton {i{} if V is a
subset of U and empty otherwise.

Define composition in the only possible way!
Q1. Show that with the above definitions, & is a category.

Solution 1. Let us note that

1. The identity morphism is zg

2. Given U C V and V C W are open sets we have z‘(,v o zg = ng

3. The remaining properties of identity and associative law follow from the
fact that if there is a morphism between two objects, it is unique.

Given a continuous map f : Y — X we say it is a local homeomorphism if
for every y € Y there is an open set V in Y such that f|, : V — f(V) is a
homeomorphism for the induced topology on V as a subset of Y and f(V) as a
subset of X.

Q2. Show that the map exp : C — C is a local homeomorphism.

(Hint: Inverse function theorem.)

Solution 2. Note that the morphism at the level of real and imaginary part is
given by (z,y) — (u,v) = (e” cosy, e siny). It follows that the Jacobian matrix
of partial derivaties is

) __ [e¥cosy —e®siny
J(U,’U,J},y) - (693 Siny ea: cosy

The determinant of this matrix is e2* which is never 0.

By the inverse function theorem, this means that for each (zg,yo), there is a
neighbourhood U of (ug,vg) = (€®° cos yg, e*° sin yp) and a pair of differentiable
functions (f, g) of (u,v) in the open set U such that

(F(e” cosy,e” siny), g(e” cos y, e” siny)) = (z, )

and (f(uo,v0), g(uo,v0)) = (xo,y0). It follows that the given map exp has a
continuous (even differentiable!) local inverse and is thus a local homeomorphism.




Given a continuous map f : Y — X and an open set U in X, a section of f over
U is a continuous map s : U — Y such that f os: U — X is the inclusion of U
in X.

Q3. Given a pair V C U of open subsets of X and a section s of f over U,
show that the restriction s),, of s to V' is a section of f over V.

Solution 3. The restriction s|- of a continuous map is also continuous. Since
f(s(z)) =z for all sin U, it also follows for all z in V.

For each U define F'(U) to be the set of sections of f over U. For a section s
of f over U and for a open subset V of U define F(i¥}) : F(U) — F(V) by the
equation F(i})(s) = s, .

Q4. Show that F defines a contravariant functor from X to Set. (Note: The
word “contravariant” was missed in the original question statements for this
question and later questions!)

Solution 4. Suppose U C V C W is a sequence of open subsets. Given
s € F(W), we have

F(iy) )(s) = s, = (s)jv = FG)(Fi)))

Hence, F is a contravariant functor from X to S.

Given a contravariant functor G from X to Set.

Given open sets U; for each 7 in some indexing set I, a collection s; € G(U;) is
said to satisfy patching if, for each ¢ and j in I we have

it au,)(5:) = Gligtap,)(5)

We say that G is a sheaf if for every collection satisfying patching, there is a
unique s in G(U) such that s; = G(if;,)(s), where U = U;U;.

Q5. Check that F is a sheaf.

Solution 5. A function s: U — Y is uniquely determined by the collection

S|U7< since U = Ule
Conversely, given functions s; : U; — Y, such that (s;)

is a unique function s : U — Y such that S|y, = Si-

lu;nu; = (Sj)\UmUj’ there

If s; are continuous, then s is also continuous since continuity is a local property;
it is enough to check that small enough open sets have open inverse images and
we know this properties for open sets contained in at least one Uj.



Given a sheaf functor G from X to Set and a point x in X, we define G, to be
the equivalence classes of pairs (s,U) as follows:

o U is an open set containing = and s € G(U), and
o (s5,U) ~ (t,V) is there is an open set W satisfying x € W C U NV such
that G (i) (s) = G(s}y)(t).

Let us define Y to be the disjoint union of G as x varies over X and g : Y — X
be the map which sends all of G, to z.

For an open set U in X and an element s in G(U) and = € U, define 3(z) to the
equivalence class in G of (s,U). This defines a map §: U — Y.

Q6. Show that g o § is the natural inclusion of U in X.

Solution 6. The equivalence class of an element (s, U) of G is sent to x under
g. If  is an element of U, then the §(x) is the equivalence class of (s,U) in G,.
Hence, its image is x.

Given open subsets U and V in X such that V C U and an element s € G(U),
let 7 = G(i¥)(s).

Q7. With notation as in Q6, Show that 7 is the same as 5|,

Solution 7. Given z in V, we note that 7(z) is the equivalence class of (r, V)
in G,. Since r = s,,, we see that this is the same as the equivalence class of
(s,U) in G,. Hence, we see that 7(z) = §(x) for z in V.

Given an open subset U of X and an element s in G(U), let Us = §(U) considered
as a subset of Y, with notation as in Q6.

Q8. Show that, as U and s vary, the sets Uy give a basis for a topology on Y.

Solution 8. Suppose that the equivalence class of (¢,W') in G, is in the
intersection Us NV, for s in G(U) and r in G(V). This means that z lies in
wW=U0nvnw.

The following equivalence classes in G, are all the same under the above hypoth-
esis.

(8\W7 W) ~ (T\W7W) ~ (t7 WI) ~ (t|W7W)
It follows that thw is a subset of U; N W,. and contains this point of G, .

This shows that the given collection satisfies the property of a basis for a topology.



Q9. With topology on Y as defined above, show that g : Y — X is a local
homemorphism.

Solution 9. Given a point of G, it is the equivalence class of some element of
the form (s,U). One checks that the set Us maps to U under g.

Since g is a bijection on basic open sets, it is a local homeomorphism.

Thus, the notion of sheaf functor from X to Set and the notion of local homem-
orphism f:Y — X coincide.

Given topological spaces X and Y, for every open set U in X, let Y.(U) be the
set of continuous maps s: U — Y (in the topology on U induced from X).

For ¥} a morphism in X as in Ql and s : U — Y, let Y.(i{})(s) = sy be the
restrction of s to V.

Q10. Show that Y is a sheaf functor X to Set.

Solution 10. If we examine the solution to Q5 we see that this was already
proved there!

If U = U;U; is a union of open sets and s; : U; — Y are given such that
(8)10;n0, = (83)10,n0, » then we can define s : U — Y by defining it as s(x) = s;(z)
for x € U;.

Secondly, since s; is continuous for each ¢ and continuity is a local property, we
see that s is continuous.

In particular, note that the sheaf R represents continuous real-valued functions
on (open sets of) X.
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