Zariski Sheaf functors

We have seen that Z-Affine schemes can be represented as functors CRing to
Set with morphisms represented by natural transformations.

We have also seen that these functors satisfy the following:

Zariski Sheaf property of F: Given a commutative ring R and elements
U1, ..., ur which generate the unit ideal. Given h; € F(R,,) fori=1,...,k
such that the images of h; and h; in F(Rou) are the same, there is a
unique h € F(R) so that h; is its image in F(R,,;).

Note that images are to be considered under the set maps F(R) — F(R,,) and
F(Ry;) = F(Ry,y,) induced by the natural ring homomorphisms R — R,,, and
Ry, — Ry, under the functor F.

We now provide some discussion and examples to justify:

e The notion of schemes needs to be extended by including more functors
CRing to Set.

e We should limit our attention to functors that satisfy the above Zariski
sheaf condition.

Geometric Interpretation

The Z-affine scheme X = A(z1,...,2p; f1,..., fy) is interpreted as the locus in
affine p-space AP defined by the vanishing of f1,..., fg.

In particular, A(z1,...,2p;) (a scheme with no equations in p variables) is
interpreted as the affine p-space AP. Note that as a functor, we have AP(R) = RP
as expected.

The ring O(X) associated with a scheme X can be seen as the ring of functions
on X or equivalently, morphisms X — Al

In particular, O(AP) = Z[z1,. .., z,] is the ring of functions on AP.

The geometric intuition is that the locus of zeros of functions is closed. Moreover,
we note that if X is as above then there is a canonical morphism X — AP such
that X (R) — A? = RP makes X (R) into a subset of RP.

Subfunctor: Given a natural transformation n : I — G such that n(R) :
F(R) — G(R) makes F(R) into a subset G(R), we say that this makes F’
into a subfunctor of G.

In particular, if F' and G are schemes then we will say that F' is a subscheme of

G.

In terms of this terminology we can say that X is a closed subscheme of AP.
In other words, what we have been calling Z-affine schemes can also be called
closed subschemes of AP.



Set-theoretic constructions (Simple cases)

Some set-theoretic constructions have natural geometric meaning so we try to
give functorial analogues.

Product

Given sets U and V we can form the product U x V which consists of pairs (u, v)
with « from U and v from V.

Given functors F' and G from CRing to Set it is not difficult to see that there
is a natural functor F' x G as follows:

o For a ring R, we define (F' x G)(R) = F(R) x G(R)
« For a ring homomorphism f : R — S, we define (F x G)(f) = F(f) x G(f).

In particular, we can apply this to the Z-affine schemes X = A(x1,...,2p; f1,..., fq)
and Y = A(y1,..-,Yr;g1,---,9s). We note that X x Y is the functor Z where

Z=A1, - Zp, Y15 Y f1, s fgr G105 Gs)

Here, we have used the fact that x; and y; are dummy variables to merge them
without overlap!

In fact, we note that O(Z) = O(X)® O(Y') where the latter is the tensor product
of the two abelian groups which has a natural ring structure as well.

Diagonal

Given a set U, we can consider it as a subset A : U — U x U via the map that
sends u to the pair (u,u).

Similarly, given a functor F' from CRing to Set, we can produce a natural
transformation A : F' — F' x F that exhibits F' as a subfunctor of F' x F.

Applying this to a Z-affine scheme X = A(z1,...,zp; f1,..., fq) we note that A
exhibits X as the subscheme of X x X defined by

Ax =A(@1, ..., Tp, Y1, Yp;
fl(X)a"'afq(x)afl(y)7"'7fq(y)ax1 _ylw"va_yp)

Intersection

Given subsets U and V in a set W, we have the intersection U NV as a subset
of W.

Similarly, given subfunctors F' and G of a functor H from CRing to Set, we
have the intersection F'N G as a subfunctor of H.

Since every Z-affine scheme is a subscheme of AP for some p, it is enough to
consider the intersection of two subschemes X = A(x1,...,xp; f1,..., fy) and



Y = A(z1,...,2p;091,-..,9r) in AP. This is the subscheme X NY defined by

XﬂY:A(x17"',l‘p;f17"'afq7gla"'7.95)

Inverse-image

Given a map f: U — V and a subset W of V, we have a subset f~1(W) of U
called the inverse image of W under f.

W) ={z eU|f(x) e W}

Similarly, given a natural transformation 7 : F' — G and a subfunctor H of G,
where all of these are functors from CRing to Set, we have a subfunctor n~1(H)
of F.

Since every Z-affine scheme is a subscheme of AP for some p, it is enough to
consider the inverse image of a subscheme Y of AP under a morphism h : X — AP,

Suppose that X = A(z1,...,2p; f1,..., fs) and Y = A(y1, ..., ¥p; 91, -+, 9q)-

Since h is given by a ring homomorphism Z[yi, ..., y,] — O(X) it is given by
polynomials A1, ..., h, in the variables z1,...,x, such that f;(h1,...,h) =0
foralli=1,...,s.

We then see that h=1(Y) = W is defined by

W = hil(Y) = A(xla'"7xr;f17"'7fsagl(h)7" 7gs(h))
where
gi(h) = 3gi (hl (3?1,...,.’L‘T),...,hr (331....,37,))

is a polynomial in the variables z1, ..., z,.

Fibre-product

All of the above constructions are related to the notion of “Fibre-product”. Given
set maps f: U — W and g: V — W, the fibre-product T = U Xy V is defined
by

T=UxwV={(u,v) eUxV|[f(u) =g(v)}
we note that it is a subset of U x V. In fact, there is a natural map UxV — WxW
and the fibre-product is the inverse image of the diagonal Ay, in W x W.

Similarly, it is not difficult to check that if U — W and V' — W are subsets of
W,then U xw V=UNW.
Disjoint Union

Given two sets U and V, we can form the disjoint union U LI V. Similarly, given
two functors F' and G from CRing to Set we can form F' U G such that

(FUG)(R) = F(R) UG(R)



However, this functor does not represent our geometric intuition when F' and G
are geometric functors as we shall see below.

Suppose that X = A(z1,...,2p; f1,...,fy) and Y = A(y1, ..., ¥r;91,---,9s)-
Let us now examine the question of what X LI'Y could be.

Recall that R = {0} represents the empty space . There is only one map from
the empty space to any space. Thus (X UY)(R) should be a singleton! However
X (R)UY.(R) is the disjoint union of two singletons and so has 2 elements.

So X UY is not the “right” choice to represent the geometric disjoint union of
X and Y.

The direct sum of rings

Functions on the disjoint union X LY of geometric spaces X and Y are pairs
(a,b) where a is a function on X and b is a function on Y. Moreover, addition
and multiplication are “entry-wise”.

This suggests that O(X UY) = O(X) & O(Y). Note also that (0,0) and (1,1)
serve as the 0-element and the 1-element respectively. Note that this ring has
two idempotents ex = (1,0) and ey = (0, 1) which satisfy

o % =ex and el =ey
e exey =0andex +ey =1

Such a pair of idempotents in a ring is called a decomposition of identity into a
pair of orthogonal idempotents.

We can check that
OX)pO(Y) =

Z[u7x1a"'7xp7y17"'ay7‘]
(fioo s fr 91595, u(l —u),uzy, ..., uzp, (L —wyr, ..., (1 —w)y,)

Here v and 1 — u are give the required pair of idempotents.

In other words, this ring is associated with the Z-affine scheme

A(u?mla"'7xpay17"'ay1";f17"'7fqvgl7"'7937
w(l —u),uzy, ..., uzp, (L —wyi,..., (1 —u)y,)

We will now use X UY for this affine scheme, but use O(X) & O(Y) in place of
the above more cumbersome notation (using u) in place of the ring O(X UY).

The question remains why O(X) @ O(Y) is the “right” choice. So we check that
it does the “right” things.
Case where R = {0}

First of all, let us note that there is only one homomorphism from any ring to
the ring {0}. Thus, as required, (X UY)({0}) is a singleton!



Case where R has only trivial idempotents

Now, if R is a ring where the only idempotents are 0 and 1 with 1 # 0, then a
homomorphism f : O(X) @ O(Y) — R has the property that exactly one of the
following holds:

o f(ex)=1and f(ey)=0
+ Flex) =0 and fley) =1

It follows that 4f R is a ring with 0 and 1 as the only idempotents, and 1 # 0
then
Hom (O(X) ® O(Y), R) = Hom (O(X), R) UHom (O(Y), R)

Here the first term on the right is identified with maps that are 0 on O(Y") and
the second term on the right is identified with maps that are 0 on O(X). So in
this case,

XR)UY(R)=(XUY)(R)

Exercise: How did we use 1 # 07

Case where R has non-trivial idempotents

When R does have a non-trivial idempotent e; (i.e. e; and e; = 1 — e; are both
non-zero), the situation becomes more complicated.

Note that even in this case, the previous calculations show that
XR)UY(R) C (XUY)(R)

In addition to homomorphisms on the left-hand side, we can have a ring homo-
morphism f : O(X) ® O(Y) — R with f(ex) = e; and f(ey) = ea. We can
also have a ring homomorphism f: O(X) @ O(Y) — R with f(ex) = ez and
fley) =e1.

Note that e; and e; give a decomposition of identity into a pair of orthogonal
idempotents in the ring R. It follows that R., = Re; and R., = Res. Note also
that R = Re; @ Res and Re,., = {0}.

A homomorphism f : O(X) ® O(Y) — R such that f(ex) = ey gives rise to
elements f; € Hom(O(X), Rey) and fo € Hom(O(Y'), Re2). So we have

f1 € X(Re,) C(XUY)(Re,)
fa € Y(Re,) C (X UY)(Re,)
Moreover, their images in (X UY)(Re,c,) are the same since this is a singleton.

The existence of an element f in (X UY)(R) in this case is an application of
the sheaf condition! This shows us the importance of the sheaf condition.

Exercise: Show that disjoint union X [[Y. as functors does not satisfy the
sheaf condition.



Complement
Given a subset V of a set U, we can form the complement U \ V.

However, if G is a subfunctor F' of functors CRing to Set, then we do not have
a functor that associates F'(R)\ G(R) to the ring R for every ring R. The reason
is that for some ring homomorphism f : R — S, some element of F(R) \ G(R)
may have image in G(S) under F(f).

For example, consider a Z-affine scheme Y = A(x;x) as a subscheme of A! and
the ring homomorphism f : Z — Z/(5). We have the Z-point of A' given by the
homomorphism Z[z] — Z that maps = to 5 whose image under f is in Y (Z/(5)).

More generally, if we want to have a notion of the complement of X =
A(x1,...,xp; f1,..., fy) in AP, we have to ensure that an R-point in the “com-
plement of X” should go to an S-point in the “complement of X” for every ring
homomorphism f: R — S.

Now an R-point of AP can be seen as a ring homomorphism a : Z[x1, ...,z —
R. Saying that it is in the complement of X (R) means that the image ideal
I =a(f1,..., fy)R is not the zero ideal in R.

The above condition, means we want the ideal I in R such that its image f(I)S
under every homomorphism f : R — S is a non-zero ideal. Since we can always
take S = R/I, this appears to be problematic!

Now, we already decided that maps from to any space is a singleton whereas
AP({0}) — X ({0}) is empty! Thus, we can allow the the image of I to be {0} in
the case of f: R — {0}.

So one way to state the above condition is that I = R. Now, the image ideal
f(I)S under any homomorphism f : R — S also satisfies f(I)S = S.
Quasi-affine Z-scheme

A quasi-affine Z-scheme is denoted A(x1,...,%p; f1,.-. ., fg3 915+, ).

We conceptually think of this as the locus of points in AP which satisfy the
equations f; =0 fori—1,...,q and {(g1,...,g,) “do not all vanish”.

To the quasi-affine scheme X = A(z1,...,2p; f1,..., fg;01,. .., 9r) We associate
a functor of points X from CRing to Set. This associates to a ring R, the set

X (R)={a=(a1,...,ap) | {(fi(@),..., fq(@))r = (O)r
and (gi(a),...,g-(a))r = R}

One special case is when r = 1. In that case, the requirement that (g;(a)) = R
is the same as the requirement that g;(a) is a unit in R. Hence, we see that

A(xla'~~axp;flw'wfq;glv"'vgr) :A(xla'"7xpvu;f17"'7fq7ugl _1’)

which is a Z-affine scheme.



In general, given X = A(z1,...,2p; f1,---5 f4;915-- -, 9r), there need not be a
Z-affine scheme Y and a natural transformation X — Y which is a bijection on
R-points for all R. For example, we can see this for A%\ {(0,0)} as we shall see.
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