Unions etc. MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

7th October 2021

Recall

We have seen that \mathbb{Z} -Affine schemes can be represented as functors **CRing** to **Set** with morphisms represented by natural transformations.

We have also seen that these functors satisfy the following:

Zariski Sheaf property of F: Given a commutative ring R and elements u_1, \ldots, u_k which generate the unit ideal. Given $h_i \in F(R_{u_i})$ for $i = 1, \ldots, k$ such that the images of h_i and h_j in $F(R_{u_iu_j})$ are the same, there is a unique $h \in F(R)$ so that h_i is its image in $F(R_{u_i})$.

Note that images are to be considered under the set maps $F(R) \rightarrow F(R_{u_i})$ and $F(R_{u_i}) \rightarrow F(R_{u_iu_j})$ induced by the natural ring homomorphisms $R \rightarrow R_{u_i}$ and $R_{u_i} \rightarrow R_{u_iu_i}$ under the functor F.

Geometric Interpretation

The \mathbb{Z} -affine scheme $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ is interpreted as the locus in affine *p*-space \mathbb{A}^p defined by the vanishing of f_1, \ldots, f_q .

In particular, $A(x_1, ..., x_p;)$ (a scheme with no equations in p variables) is interpreted as the affine p-space \mathbb{A}^p . Note that as a functor, we have $\mathbb{A}^p(R) = R^p$ as expected.

The ring $\mathcal{O}(X)$ associated with a scheme X can be seen as the ring of functions on X or equivalently, morphisms $X \to \mathbb{A}^1$.

In particular, $\mathcal{O}(\mathbb{A}^p) = \mathbb{Z}[x_1, \dots, x_p]$ is the ring of functions on \mathbb{A}^p .

The geometric intuition is that the locus of zeros of functions is *closed*. Moreover, we note that if X is as above then there is a canonical morphism $X \to \mathbb{A}^p$ such that $X(R) \to \mathbb{A}^p = R^p$ makes X(R) into a *subset* of R^p .

Subfunctor: Given a natural transformation $\eta : F \to G$ such that $\eta(R) : F(R) \to G(R)$ makes F(R) into a subset G(R), we say that this makes F into a *subfunctor* of G.

In particular, if F and G are schemes then we will say that F is a *subscheme* of G.

In terms of this terminology we can say that X is a *closed subscheme* of \mathbb{A}^p . In other words, what we have been calling \mathbb{Z} -affine schemes can also be called closed subschemes of \mathbb{A}^p .

Set-theory for Geometry

So the theme of the current set of lectures is to try to discuss and justify the following.

- The notion of schemes needs to be extended by including more functors CRing to Set.
- We will limit our attention to functors that satisfy the Zariski sheaf condition.

Some "standard" set-theoretic opertions such as product, intersection and inverse-image can be understood somewhat easily and will be explained later.

We start with a somewhat tricky case!

Disjoint Union

Given two sets U and V, we can form the disjoint union $U \sqcup V$.

Similarly, given two functors F and G from **CRing** to **Set** we can form $F \sqcup G$ such that

 $(F \sqcup G)(R) = F(R) \sqcup G(R)$

However, this functor *does not* represent our geometric intuition when F and G are geometric functors as we shall see below.

Suppose that $X = A(x_1, ..., x_p; f_1, ..., f_q)$ and $Y = A(y_1, ..., y_r; g_1, ..., g_s)$. Let us now examine the question of what $X \sqcup Y$ could be.

Recall that $R = \{0\}$ represents the empty space . There is only *one* map from the empty space to any space. Thus $(X \sqcup Y)(R)$ should be a singleton! However $X(R) \sqcup Y(R)$ is the disjoint union of two singletons and so has 2 elements.

So $X \sqcup Y$ is not the "right" choice to represent the geometric disjoint union of X and Y.

The direct sum of rings

Functions on the disjoint union $X \sqcup Y$ of geometric spaces X and Y are *pairs* (a, b) where a is a function on X and b is a function on Y. Moreover, addition and multiplication are "entry-wise".

This suggests that $\mathcal{O}(X \sqcup Y) = \mathcal{O}(X) \oplus \mathcal{O}(Y)$. Note also that (0,0) and (1,1) serve as the 0-element and the 1-element respectively.

Note that this ring has two idempotents $e_X = (1,0)$ and $e_Y = (0,1)$ which satisfy

- $e_X^2 = e_X$ and $e_Y^2 = e_Y$
- $e_X e_Y = 0$ and $e_X + e_Y = 1$

Such a pair of idempotents in a ring is called a *decomposition of identity into a pair of orthogonal idempotents*.

We can check that $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ is isomorphic to

$$\frac{\mathbb{Z}[u, x_1, \ldots, x_p, y_1, \ldots, y_r]}{\langle f_1, \ldots, f_q, g_1, \ldots, g_s, u(1-u), ux_1, \ldots, ux_p, (1-u)y_1, \ldots, (1-u)y_r \rangle}$$

Here u and 1 - u are give the required pair of idempotents.

In other words, this ring is associated with the $\mathbb{Z}\text{-affine}$ scheme

$$A(u, x_1, \dots, x_p, y_1, \dots, y_r; f_1, \dots, f_q, g_1, \dots, g_s, u(1-u), ux_1, \dots, ux_p, (1-u)y_1, \dots, (1-u)y_r)$$

We will now use $X \sqcup Y$ for this affine scheme, and use $\mathcal{O}(X) \oplus \mathcal{O}(Y)$ for the ring $\mathcal{O}(X \sqcup Y)$.

We now check that it does the "right" things.

Case where $R = \{0\}$

First of all, let us note that there *is* only one homomorphism from *any* ring to the ring $\{0\}$.

Thus, as required, $(X \sqcup Y)(\{0\})$ is a singleton!

Case where R has only trivial idempotents

Now, if *R* is a ring where the *only* idempotents are 0 and 1 with $1 \neq 0$, then a homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ has the property that *exactly* one of the following holds:

- $f(e_X) = 1$ and $f(e_Y) = 0$
- $f(e_X) = 0$ and $f(e_Y) = 1$

It follows that if R is a ring with 0 and 1 as the only idempotents, and $1 \neq 0$ then

 $\operatorname{Hom}\left(\mathcal{O}(X)\oplus\mathcal{O}(Y),R\right)=\operatorname{Hom}\left(\mathcal{O}(X),R\right)\sqcup\operatorname{Hom}\left(\mathcal{O}(Y),R\right)$

Here the first term on the right is identified with maps that are 0 on $\mathcal{O}(Y)$ and the second term on the right is identified with maps that are 0 on $\mathcal{O}(X)$.

So in this case,

$X(R)\sqcup Y(R)=(X\sqcup Y)(R)$

Exercise: How did we use $1 \neq 0$ in *R*?

Case where R has non-trivial idempotents

When *R* does have a non-trivial idempotent e_1 (i.e. e_1 and $e_2 = 1 - e_1$ are both non-zero), the situation becomes more complicated.

Note that even in this case, the previous calculations show that

 $X(R) \sqcup Y(R) \subset (X \sqcup Y)(R)$

In addition to homomorphisms on the left-hand side, we can have a ring homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ with $f(e_X) = e_1$ and $f(e_Y) = e_2$.

We can also have a ring homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ with $f(e_X) = e_2$ and $f(e_Y) = e_1$.

Note that e_1 and e_2 give a decomposition of identity into a pair of orthogonal idempotents in the ring R.

It follows that $R_{e_1} = Re_1$ and $R_{e_2} = Re_2$. Note also that $R = Re_1 \oplus Re_2$ and $R_{e_1e_2} = \{0\}$.

A homomorphism $f : \mathcal{O}(X) \oplus \mathcal{O}(Y) \to R$ such that $f(e_X) = e_1$ gives rise to elements $f_1 \in \operatorname{Hom}(\mathcal{O}(X), Re_1)$ and $f_2 \in \operatorname{Hom}(\mathcal{O}(Y), Re_2)$.

So we have

 $f_1 \in X(R_{e_1}) \subset (X \sqcup Y)(R_{e_1})$ $f_2 \in Y(R_{e_2}) \subset (X \sqcup Y)(R_{e_2})$ Now their images in $(X \sqcup Y)(R_{e_1e_2})$ are the same since this is a *singleton*.

The existence of an element f in $(X \sqcup Y)(R)$ in this case is an application of the *sheaf condition*!

This shows us the importance of the sheaf condition.

Exercise: Show that disjoint union $X \sqcup Y$ as functors does not satisfy the sheaf condition.

Product

Given sets U and V we can form the product $U \times V$ which consists of pairs (u, v) with u from U and v from V.

Given functors F and G from **CRing** to **Set** it is not difficult to see that there is a natural functor $F \times G$ as follows:

- For a ring R, we define $(F \times G)(R) = F(R) \times G(R)$
- For a ring homomorphism $f : R \to S$, we define $(F \times G)(f) = F(f) \times G(f)$.

In particular, we can apply this to the \mathbb{Z} -affine schemes $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ and $Y = A(y_1, \ldots, y_r; g_1, \ldots, g_s)$. We note that $X \times Y$ is the functor Z where

$$Z = A(x_1,\ldots,x_p,y_1,\ldots,y_r;f_1,\ldots,f_q,g_1,\ldots,g_s)$$

Here, we have used the fact that x_i and y_j are *dummy* variables to merge them without overlap!

In fact, we note that $\mathcal{O}(Z) = \mathcal{O}(X) \otimes \mathcal{O}(Y)$ where the latter is the tensor product of the two abelian groups which has a natural ring structure as well.

Intersection

Given subsets U and V in a set W, we have the intersection $U \cap V$ as a subset of W.

Similarly, given subfunctors F and G of a functor H from **CRing** to **Set**, we have the intersection $F \cap G$ as a subfunctor of H.

Since every \mathbb{Z} -affine scheme is a subscheme of \mathbb{A}^p for some p, it is enough to consider the intersection of two subschemes $X = A(x_1, \ldots, x_p; f_1, \ldots, f_q)$ and $Y = A(x_1, \ldots, x_p; g_1, \ldots, g_r)$ in \mathbb{A}^p .

This is the subscheme $X \cap Y$ defined by

 $X \cap Y = A(x_1, \ldots, x_p; f_1, \ldots, f_q, g_1, \ldots, g_s)$

Inverse-image

Given a map $f: U \to V$ and a subset W of V, we have a subset $f^{-1}(W)$ of U called the inverse image of W under f.

 $f^{-1}(W) = \{x \in U | f(x) \in W\}$

Similarly, given a natural transformation $\eta: F \to G$ and a subfunctor H of G, where all of these are functors from **CRing** to **Set**, we have a subfunctor $\eta^{-1}(H)$ of F.

Since every \mathbb{Z} -affine scheme is a subscheme of \mathbb{A}^p for some p, it is enough to consider the inverse image of a subscheme Y of \mathbb{A}^p under a morphism $h: X \to \mathbb{A}^p$.

Suppose that $X = A(x_1, \dots, x_r; f_1, \dots, f_s)$ and $Y = A(y_1, \dots, y_p; g_1, \dots, g_q)$.

Since *h* is given by a ring homomorphism $\mathbb{Z}[y_1, \ldots, y_p] \to \mathcal{O}(X)$ it is given by polynomials h_1, \ldots, h_p in the variables x_1, \ldots, x_r such that $f_i(h_1, \ldots, h_r) = 0$ for all $i = 1, \ldots, s$.

We then see that $h^{-1}(Y) = W$ is defined by

$$W = h^{-1}(Y) = A(x_1, ..., x_r; f_1, ..., f_s, g_1(\mathbf{h}), ..., g_s(\mathbf{h}))$$

where

$$g_i(\mathbf{h}) = g_i\left(h_1\left(x_1,\ldots,x_r\right),\ldots,h_r\left(x_1,\ldots,x_r\right)\right)$$

is a polynomial in the variables x_1, \ldots, x_r .