Functors and Natural Transformations MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

20th September 2021

Kapil Hari Paranjape (IISER Mohali)

Recall

We introduced the notion of categories as a new viewpoint when compared with the notion of sets with structure.

The basic idea is that of a certain type of objects and morphisms between them which can be composed. We have identity morphisms and composition satisfies associativity.

We introduced examples of categories like **Set**, **Gp**, **Top**, **Ring**, **CRing** associated with these type of mathematical objects.

We introduce the *small* category \mathbb{Z} -Aff of \mathbb{Z} -Affine schemes which was the opposite category of \mathcal{FPR} the category of finitely presented commutative rings.

Affine algebraic geometry is the dual notion of commutative algebra.

Today we will look at \mathbb{Z} -Aff slightly differently so that we can *extend* this category to define the category of schemes.

Functors

Given categories C and D, a functor F from C to D:

- to an object X of C associates an object F(X) of D,
- to a morphism $f : X \to Y$ of C associates a morphism $F(f) : F(X) \to F(Y)$ of D,
- ▶ such that we have $F(i_X) = i_{F(X)}$ and $F(g \circ f) = F(g) \circ F(f)$.

Such a functor is sometimes called a *covariant* functor.

A functor from $\mathcal{C}^{\mathrm{opp}}$ to \mathcal{D} is called a *contravariant* functor from \mathcal{C} to \mathcal{D} .

For a *contravariant* functor, a morphism $f : X \to Y$ is associated to a morphism $F(f) : F(Y) \to F(X)$.

Kapil Hari Paranjape (IISER Mohali)

Functor of points

Given a \mathbb{Z} -affine scheme X we have seen that to each commutative ring R, we have associated a set X(R) of R-points of X.

We now claim that this is gives a functor **CRing** to **Set**.

To avoid confusion, we will denote this functor as $X_{.}$ and define $X_{.}(R) = X(R)$.

Recall that there is a commutative ring $\mathcal{O}(X)$ associated with X so that there is a natural identification $X(R) = \text{Hom}(\mathcal{O}(X), R)$.

Hence, an element $\mathbf{a} \in X(R)$ is identified with a honomorphism $\mathbf{a} : \mathcal{O}(X) \to R$.

Given a ring homomorphism $h : R \to S$ obtain (by composition) a homomorphism $h \circ \mathbf{a} : \mathcal{O}(X) \to S$. This is an element of X(S).

Hence, we see that X(h) given by $\mathbf{a} \mapsto h \circ \mathbf{a}$ is a set map $X(R) \to X(S)$.

Exercise: With definitions as above check that X_i is a functor from **CRing** to **Set**.

We will give a more conceptual argument below.

Kapil Hari Paranjape (IISER Mohali)

The functor A^{\cdot}

In fact, given a commutative ring A, we can define a functor A^{\cdot} from **CRing** to **Set** as follows:

For a ring we define A (R) = Hom(A, R). Note that Hom(A, R) is a set!

For a ring homomorphism $h: R \to S$, we define $A^{\cdot}(h) : A^{\cdot}(R) \to A^{\cdot}(S)$ by composition. Given $f: A \to R$ an element of $A^{\cdot}(R)$ we have $A^{\cdot}(h) = h \circ f : A \to S$ which is an element of $A^{\cdot}(S)$.

The associative property of composition and the right identity property of i_R show that this is a functor. We will see shortly how the left identity property of i_A gets used!

Note that the functor X is the same as the functor A where A = O(X).

Natural transformations

Given functors F and G from C to D, we have the notion of a *natural* transformation $\eta : F \to G$.

This associates, to each object X of C, a morphism $\eta(X) : F(X) \to G(X)$ in \mathcal{D} .

This has the property that if $f : X \to Y$ is a morphism in C, then $\eta(Y) \circ F(f) = G(f) \circ \eta(X)$.

In other words, the following diagram commutes

 $F(X) \stackrel{\eta(X)}{\to} G(X)$ $F(f) \downarrow \qquad \downarrow G(f)$ $F(Y) \stackrel{\eta(Y)}{\to} G(Y)$

Kapil Hari Paranjape (IISER Mohali)

Morphisms as natural transformations

Given X and Y are \mathbb{Z} -affine schemes, a morphism $f : X \to Y$ corresponds to a ring homomorphism $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$.

For a ring *R*, given $\mathbf{a} : \mathcal{O}(X) \to R$, we can compose to get

 $\mathbf{a} \circ f^* : \mathcal{O}(Y) \to R$

Thus, we have $\tilde{f}(R) : X(R) \to Y(R)$ for each ring R defined by $\tilde{f}(R)(\mathbf{a}) = \mathbf{a} \circ f^*$ considered as an element of Y(R).

Exercise: Check that \tilde{f} is a natural transformation $X \to Y$ which are considered as functors **CRing** to **Set**.

Kapil Hari Paranjape (IISER Mohali)

Yoneda Lemma for CRing

More generally, suppose F is a functor from **CRing** to **Set**.

Given a natural transformation $\eta : A^{\cdot} \to F$, we note that $\eta(A) : A^{\cdot}(A) \to F(A)$ is a set map.

Applying to the element i_A in A(A), we have an element $f = \eta(A)(i_A) \in F(A)$ associated with η .

Conversely, given $f \in F(A)$, we define $\eta : A \to F$ as follows.

Given an object *B* in **CRing** and $g \in A(B) = \text{Hom}(A, B)$, the fact that *F* is a functor gives $F(g) : F(A) \to F(B)$. We then define $\eta(Y)(g) = F(g)(f)$.

Exercise: Check that η as defined above is a natural transformation.

Kapil Hari Paranjape (IISER Mohali)

In particular, we note that natural transformations $A^{\cdot} \to B^{\cdot}$ can be identified with $B^{\cdot}(A) = \text{Hom}(B, A)$.

We can use $f : A \to B$ to denote the natural transformation associated with a homomorphism $f : B \to A$.

We can apply this to the functors X = A where A = O(X) and Y = B where B = O(Y).

It follows that a natural transformation $X \to Y$ can be identified with a morphism $X \to Y$. (Note the *double* reversal!)

The category \mathbb{Z} -Aff can be seen as a category of functors **CRing** to **Set** with morphisms between functors being defined as natural transformations.

The notes also explain that the Yoneda lemma is not special to CRing.

Kapil Hari Paranjape (IISER Mohali)

Conclusion

- ▶ We introduced the categories, functors and natural transformations.
- We provided some important examples of categories.
- ▶ In particular, we introduced the category Z-Aff of Z-Affine schemes.
- ► We also showed that a Z-Affine scheme can be seen as a functor CRing to Set.
- The Yoneda lemma identifies morphisms between schemes as natural transformation of functors.
- ► This points the way to *extending* the category Z-Aff to a bigger category of such functors.