Categories MTH437 — Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali

16th September 2021

Kapil Hari Paranjape (IISER Mohali)

Recall

We introduced the notion of a \mathbb{Z} -affine scheme.

Z-affine scheme: A **Z**-affine scheme is of the form $A(x_1, \ldots, x_p; f_1, \cdots, f_q)$ where f_1, \ldots, f_q are polynomials in the variables x_1, \ldots, x_p with coefficients in the ring **Z** of integers.

To an affine scheme $X = A(x_1, ..., x_p; f_1, ..., f_q)$ we associated the commutative ring:

$$\mathcal{O}(X) = rac{\mathbb{Z}[x_1,\ldots,x_p]}{\langle f_1,\ldots,f_q \rangle},$$

R-point of *X*: Give an affine scheme *X* and a commutative ring *R*, an *R*-point of *X* is a ring homomorphism $f : \mathcal{O}(X) \to R$.

A morphism of schemes is now defined as follows.

Morphism of \mathbb{Z} -affine schemes: Given \mathbb{Z} -affine schemes X and Y, a *morphism* $f : X \to Y$ is an $\mathcal{O}(X)$ -point of Y.

We usually denote the corresponding ring homomorphism as $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$ to indicate that it is in the *opposite* direction of the morphism of schemes.

We denote the collection of morphisms as Mor(X, Y) and so we have

 $Mor(X, Y) = Hom(\mathcal{O}(Y), \mathcal{O}(X))$

where the latter is the collection of ring homomorphisms.

The important point to remember is the following:

All properties of \mathbb{Z} -affine schemes are understood in terms of the above definitions.

More specifically, the notion of \mathbb{Z} -affine schemes and morphisms between them determine a *category*.

Sets with structure

The definition we have given of a \mathbb{Z} -affine scheme is quite *different* from some of the definitions encountered elsewhere in mathematics courses.

A typical (20-th century) mathematical definition is that of a "set with structure". For example:

Group: A group is a set G with an element 1_G and operations μ_G (multiplication) and ι_G (inverse) that satisfy some properties.

Topological space: A topological space is a set X with a collection τ_X of subsets (open subsets), that satisfy some properties.

...and so on.

We then define the associated "morphisms", or distinctive set maps as those that "preserve" the structure.

Group Homomorphism: Given groups G and H a group homomorphism is a set map $f : G \to H$ such that $f(1_G) = 1_H$, $f \circ \iota_G = \iota_H \circ f$ and $f \circ \mu_G = \mu_H \circ (f, f)$. **Continuous Map**: Given topological spaces X and Y a continuous map is a set map $f : X \to Y$ such that $f^{-1}(U) \in \tau_X$ if $U \in \tau_Y$.

... and so on.

Categorical viewpoint

Category theory takes a different point of view:

Mathematical structure is determined by morphisms; the "internal" set-theoretic structure of the objects is less (or not!) relevant.

In a category we have objects and morphisms. Let us denote objects by capital letters X, Y, Z, \ldots and morphisms by lower-case letters f, g, h, \ldots

- For every object X, we have an identity morphism $i_X : X \to X$.
- Given a morphism $f : X \to Y$ and a morphism $g : Y \to Z$, we can compose to get $g \circ f : X \to Z$.
- ► Given a morphism f : X → Y we have i_Y ∘ f = f = f ∘ i_X. In other words, the identity morphisms act as identity with respect to composition.
- Given morphisms f : W → X, g : X → Y and h : Y → Z, we have the associativity of composition.h ∘ (g ∘ f) = (h ∘ g) ∘ f.

Isomorphisms and Automorphisms

We can make now make sense of some "standard" notions.

Isomorphism: A morphism $f : X \to Y$ is an isomorphism if there is a morphism $g : Y \to X$ such that $g \circ f = i_X$ and $f \circ g = i_Y$. This g is called an inverse of f in this case.

- **Exercise**: Check that if $h: Y \to X$ is such that $h \circ f = i_X$, then h = g. This shows that the inverse is unique.
- **Exercise**: Check that if $f : X \to Y$, $g : Y \to X$ and $h : Y \to X$ are such that $g \circ f = i_X$ and $f \circ h = i_Y$, then g = h and all of these morphisms are isomorphisms.

Automorphism: An isomorphism $f : X \to X$ is called an *automorphism* of *X*.

Clearly, i_X is an automorphism. Moreover, the composition of automorphisms is an automorphism.

In many cases, the morphisms from X to Y form a set which is denoted by Mor(X, Y). In such cases we see that the subset Aut(X) of Mor(X, X) which consists of automorphisms, forms a group.

Standard Examples

- There is a category Set whose objects are sets and morphisms are set maps.
- There is a category Gp whose objects are groups and morphisms are group homomorphisms.
- There is a category **Top** whose objects are topological spaces and morphisms are continuous maps.
- There is a category **Ring** whose objects are rings with identity and morphisms are ring homomorphisms.
- There is a category CRing whose objects are Commutative rings with identity and morphisms are ring homomorphisms.

All these categories are "big" in the sense that objects are not members of a set.

Russell's paradox prevents us from talking about the set of all sets.

However, morphisms between two chosen objects *do* form a set in all these cases.

Other examples

- There is a category F whose objects are the sets [n] = {0,...,n-1} for a non-negative integer n (here [0] is interpreted as the empty set); a morphism f : [n] → [m] is just a map of (finite) sets.
- Given a field F, there is a category \mathcal{V}_F whose objects are the sets F^n and a morphism $f : F^n \to F^m$ is an $m \times n$ matrix.

Note that in both these categories, the objects form a *countable* set. In the second case, if F is an uncountable field, then morphisms are also uncountable. Otherwise, the morphisms also form a countable set!

Secondly, note that, in some sense, the category \mathcal{F} is *essentially* the category of *finite* sets. (However, Russell's paradox also prevents us from talking about the set of all finite sets!)

Similarly, the category \mathcal{V}_F is *essentially* the category of finite dimensional vector spaces.

\mathcal{FPR}

Consider the category \mathcal{FPR} whose objects are Finitely Presented commutative Rings:

 $\frac{\mathbb{Z}[x_1,\ldots,x_p]}{\langle f_1,\ldots,f_q \rangle}$

where x_1, \ldots, x_p are treated as "dummy" variables as seen earlier, and morphisms are ring homomorphisms.

By standard results in ring theory, we see that morphisms in \mathcal{FPR} satisfy the properties expected for a category.

Note that the category \mathcal{FPR} has countably many objects (since we treat the variables as "dummy" using the semi-group approach to polynomials). Moreover, since a morphism of such rings is *determined* by the images of the variables, these are also countable.

We have the category \mathbb{Z} -Aff whose objects are \mathbb{Z} -affine schemes and morphisms are morphisms of \mathbb{Z} -affine schemes as defined above.

One can directly check the properties of morphisms as listed above. However, we will reduce this question to one we "know".

Opposite Category

Given a category C, we consider the category C^{opp} whose objects are the same as the objects of C and morphisms are also the same as the morphisms of C except that we reverse the arrows!

- ► Given an object X of C, let X^{opp} denote the same object when considered in C^{opp}.
- Given a morphism $f : X \to Y$ in \mathcal{C} , we denote by $f^{\text{opp}} : Y^{\text{opp}} \to X^{\text{opp}}$, the corresponding morphism in \mathcal{C}^{opp} .
- We define $i_{X^{\text{opp}}} = (i_X)^{\text{opp}}$.

One easily checks that morphisms in $\mathcal{C}^{\mathrm{opp}}$ satisfy the properties expected for a category.

\mathbb{Z} -Aff is a category

We see that if X is a \mathbb{Z} -affine scheme, then $\mathcal{O}(X)$ is an object in \mathcal{FPR} .

Conversely, given an object $\mathbb{Z}[x_1, \ldots, x_p]/\langle f_1, \ldots, f_q \rangle$ in \mathcal{FPR} , we have the associated \mathbb{Z} -affine scheme $A(x_1, \ldots, x_p; f_1, \ldots, f_q)$.

We have seen that a morphism $f : X \to Y$ of \mathbb{Z} -affine schemes corresponds *precisely* to a ring homomorphism $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$.

It follows that \mathbb{Z} -Aff is \mathcal{FPR}^{opp} .

In particular, we see immediately that ring theory has *already* proved that morphisms in \mathbb{Z} -Aff satisfy the properties expected for a category.

This may be seen as the basis of the statement:

Affine algebraic geometry is the dual notion of commutative algebra.

In this course, *schemes* will be the primary concept and thus we will look at everything through the "prism" of \mathbb{Z} -Aff.