
Affine Schemes
We wish to understand the solutions of systems of algebraic equations. To do so
we must look for the most general form of such equations that we may encounter.

Algebraic equations
What is an algebraic equation?

We have a collection (x1, . . . , xp) of variables. We then form monomials
xk1

1 · · ·x
kp
p where (k1, . . . , kp) are non-negative integers. We form terms

ak1,...,kp
xk1

1 · · ·x
kp
p where the coefficients ak1,...,kp

lie in some field F . We now
create a polynomial

f(x1, . . . , xp) =
∑

(0≤ki≤di)i=1,...,p

ak1,...,kp
xk1

1 . . . xkp
p

as a sum of finitely many terms. Then f(x1, . . . , xp) = 0 is an algebraic equation.
(Note: The coefficients are given elements of the field F , even if notationally
they appear similar to variables!)

Semi-group ring

If one applies “Occam’s razor” to remove inessential aspects of the notation,
then one can think of a monomial as (k1, . . . , kp) which is an element of the
semi-group Wp, where W is the collection of non-negative integers.

Note that multiplication of monomials is the same as addition in this semi-group.

(xk1
1 · · ·xkp

p ) · (xm1
1 · · ·xmp

p ) = xk1+m1
1 · · ·xkp+mp

p

It follows that a polynomial is a finite linear combination of elements of this
semi-group with coefficients in the field F .

This is sometimes a useful way to understand polynomials—in computer imple-
mentations as well as in algebraic geometry!

In any case, it is convenient to introduce the notation k = (k1, . . . , kp) and

xk = xk1
1 · · ·xkp

p

for a monomial; we can loosely think of this as the k-th (multi-)power of the
“vector” x = (x1, . . . , xp). We then define |k| =

∑p
i=1 kp as the total degree of a

monomial.

This allows us to use the compact notation f(x) =
∑
|k|≤d akxk for a polynomial

with total degree at most d.
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Field of coefficients

The field F contains a prime subfield F, which is either a finite field Fp of order
a prime p, or the field Q of rational numbers.

The polynomial f uses finitely many elements of the field F as coefficients. Hence,
these coefficients lie in a finitely generated field

Ef = F
(

(ak)|k|≤d
)

We need to see what such fields look like.

Algebraic and Transcendental elements.

Given a subfield E of a field F and an element a of F , there is a natural
homomorphism ea : E[x] → F which maps x to a; here E[x] denotes the
polynomial ring in one variable over E.

Since F is a domain, the kernel of ea is a prime ideal. Thus, either it is {0} or
it is generated by a monic irreducible polynomial xd + b1x

d−1 + · · ·+ bd, with
b1, . . . , bd in the field E.

In the first case, we say that a is transcendental over E. In this case, the above
map extends to a field inclusion E(x) → F ; here E(x) denotes the field of
fractions of E[x] which is the field of rational functions in one variable x over E.
The image is precisely E(a), the subfield of F generated by a and E. In other
words, E(x) and E(a) are isomorphic.

In the second case, we say that a is algebraic over E. In this case, the image
E[a] of ea is a field. Hence, E[a] is the same as the subfield E(a) of F generated
by a over E.

Working inductively over finitely many elements a1, . . . , ad of F , we see that we
can re-order them so that E(a1, . . . , ad) is of the form E(b1, . . . , bt)[c1, . . . , cu]
where:

• bi is transcendental over E(b1, . . . .bi−1), and
• cj is algebraic over E(b1, . . . , bt)[c1, . . . , cj−1].

Here bi = aσ(i) and cj = aσ(t+j) for some permutation σ of 1, . . . , d.

Application to the field of coefficients

We can apply this to the field Ef to identify it with F(b1, . . . , bt)[c1, . . . , cu]
where the bi and cj are the coefficients ak’s of the polynomial f re-arranged in
some fashion.

For i = 1, . . . , t, let ki be the element of Wp so that one term of f(x) is bixki .
Similarly, for j = 1, . . . , u let mj be the element of Wd so that one term of f(x)
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is cjxmj . This, allows us to write the original polynomial equation in the more
compact form

f(x) =
t∑
i=1

bixki +
u∑
j=1

cjxmj

where:

• bi is transcendental over the field F(b1, . . . , bi−1).
• cj is algebraic over the field F(b1, . . . , bt)[c1, . . . , cj−1].

System of equations

We now consider a system of polynomial equations in the variables x1, . . . , xp
with coefficients in a field F . ∑

k≤d1

a1,kxk = 0

∑
k≤d2

a2,kxk = 0

...∑
k≤dq

aq,kxk = 0

The collection of all coefficients is finite. Hence the field generated by them over
the prime field F is finitely generated. We can now organise these coefficients as
above to re-write the equations in the form:

t1∑
i=1

bixk +
u1∑
j=1

cjxk = 0

t2∑
i=t1

bixk +
u2∑
j=u1

cjxk = 0

...
t∑

i=tq−1

bixk +
u∑

j=uq−1

cjxk = 0

where:

• bi is transcendental over the field F(b1, . . . , bi−1).
• cj is algebraic over the field F(b1, . . . , bt)[c1, . . . , cj−1].
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Adding new variables

Since the bi’s are transcendental over the field F we can think of them as
“variables”. So we introduce the notation yi in place of bi (to remind us that
these are variables!) and write our equations as:

t1∑
i=1

yixk +
u1∑
j=1

cjxk = 0

t2∑
i=t1

yixk +
u2∑
j=u1

cjxk = 0

...
t∑

i=tq−1

yixk +
u∑

j=uq−1

cjxk = 0

Now cj satisfies an equation of the form

xdj + gj,1x
dj−1 + · · ·+ gj,dj = 0

where gj,s are elements of the field F(y1, . . . , yt)[c1, . . . , cj−1]. We can introduce
additional variables z1, . . . , zu in place of ci’s and add the equations

zj
dj + gj,1zj

dj−1 + · · ·+ gj,dj
= 0

to our system of equations!

However, gj,s are not polynomials! We now resolve that issue.

Clearing denominators

Given a polynomial equation
∑
|k|≤d akxk = 0 where the coefficients ak are in

the field F of fractions of a domain R.

It follows that ak = bk/ck where bk and ck lie in R. Since there are only finitely
many k involved, we can replace ck by the product of all ck’s to write ak = bk/c
for a common denominator c in R.

By clearing denominators, we see that the above equation is the same as the
equation

∑
|k|≤d bkxk = 0.

However, we need to ensure that c is invertible as well. To do so, we add another
variable w and add the equation cw − 1 = 0. The pair of equations

cw − 1 = 0 and
∑
|k|≤d

bkxk = 0

replaces the above single equation over F with a system of equations over R.
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Equations with integer coefficients

We now apply this discussion to the equations:

z
dj

j + gj,1z
dj−1
j + · · ·+ gj,dj

= 0

where gj,k are elements of the field F(y1, . . . , yt)[c1, . . . , cj−1].

By clearing denominators, we can replace these by pairs of equations of the form

hi,0wj − 1 = 0 and hj,0zdj

j + hj,1z
dj−1
j + · · ·+ hj,dj

= 0

where hj,k are elements of the ring F[y1, . . . , yt][c1, . . . , cj−1] such that gj,k =
hj,k/hj,0.

Note that this equation is satisfied by cj .

For each r and s, let fr,s denote the polynomial obtained by replacing cj by zj
in the polynomial hr,s.

So we add the above equations with bi replaced by new variables yi, and cj
replaced by zi to obtain a combined system:

t1∑
i=1

yixk +
u1∑
j=1

zjxk = 0

t2∑
i=t1

yixk +
u2∑
j=u1

zjxk = 0

...
t∑

i=tq−1

yixk +
u∑

j=uq−1

zjxk = 0

f1,0z
d1
1 + f1,1z

d1−1
1 + · · ·+ f1,d1 = 0 and f1,0w1 − 1 = 0

f2,0z
d2
2 + f2,1z

d2−1
2 + · · ·+ f2,d2 = 0 and f2,0w2 − 1 = 0

...
ft,0z

du
u + fu,1z

du−1
u + · · ·+ fu,du

= 0 and f2,uwu − 1 = 0

where the variables are the x’s, y’s and z’s. This entire system of equations has
coefficients in the prime field F.

In fact, if the prime field in Q, then we can even assume that the coefficients are
in the ring of integers Z by clearing denominators.

Similarly, equations with coefficients in the field Fp can be seen as equations
with integer coefficients, by “lifting” the elements of Fp to integers. In order to
ensure that we only look at “integers mod p” we can add the equation p = 0!
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In summary, the most general system of equations that we want to solve is of
the form ∑

|k|≤d

ai,kxk = 0


i=1,...,q

where the coefficients ai,k are integers.

(Perhaps this explains why number theory plays such an important role in
algebraic geometry!)

Z-affine schemes
Z-affine scheme: A Z-affine scheme is of the form A(x1, . . . , xp; f1, · · · , fq)

where f1, . . . , fq are polynomials in the variables x1, . . . , xp with coefficients
in the ring Z of integers.

Note that the A() notation is a symbol to denote that we are looking at the
affine scheme associated with this system of equations. So far this “definition” is
therefore just an introduction of notation!

Since the variables xi are “dummy” variables which can be eliminated by using
the semi-group ring of monomials, we see that such a system of equations is
determined by the coefficients. This is a collection of integers indexed by a
finite subset of ∪p≥0 (N×Wp). As a consequence, there are only countably many
Z-affine schemes.

Note that, in the definition, we could have used any commutative ring R in
place of Z to get a definition of R-affine schemes. (Moreover one could allow for
infinitely many equations in that case.)

R-points

Given a polynomial f(x1, . . . , xp) with integer coefficients and elements a1, . . . , ap
of a commutative ring R, we can evaluate f(a1, . . . , ap) to see whether it is 0.

Given a Z-affine scheme X = A(x1, . . . , xp; f1, . . . , fq) and a commutative ring
R, we define

X(R) =
{

(a1, . . . , ap)
∣∣ f1 (a1, . . . , ap) = · · · = fq (a1, . . . , ap) = 0

}
Such a solution in R is also called an R-point of X. This means X(R) is the
collection of R-points of X.

Note that it is necessary for R to be commutative in order to make sense of
f(a1, . . . , ar).
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Evaluation map

Given a commutative ring R, and elements a1, . . . , ap in R, the evaluation of
polynomials at a = (a1, . . . , ap) is the same as a ring homomorphism:

ea : Z[x1, . . . , xp]→ R such that xi 7→ ai for i = 1, . . . , p

The condition f(a1, . . . , ap) = 0 becomes ea(f(x1, . . . , xp)) = 0.

It follows that X(R) consists of (a1, . . . , ap) such that fi(x1, . . . , xp) lie in the
kernel of ea for i = 1, . . . , q. In other words,

X(R) =
{

(a1, . . . , ap)
∣∣ fi ∈ ker(ea) for i = 1, . . . , q

}
Note that ker(ea) is an ideal in Z[x1, . . . , xp]. If 〈f1, . . . , fq〉 denotes the ideal in
Z[x1, . . . , xp] generated by f1, . . . , fq, then we see that the above condition on a
becomes 〈f1, . . . , fq〉 ⊂ ker(ea). Now, Noether’s isomorphism theorem says that

X(R) = Hom
(
Z[x1, . . . , xp]
〈f1, . . . , fq〉

, R

)
where Hom indicates ring homomorphisms. It is thus natural to introduce the
ring:

O(X) = Z[x1, . . . , xp]
〈f1, . . . , fq〉

,

which is naturally associated with the affine schemeX = A(x1, . . . , xp; f1, . . . , fq).
We then get

X(R) = Hom (O(X), R)
in terms of ring homomorphisms.

Solutions in finite rings

One important example of the above is when the commutative ring is taken to
be a finite field Fq.

Now Fq is an r-dimensional vector space over Fp for the prime p such that q = pr.
It follows that Fq can be identified as a sub-ring of the matrix ring Mr(Fp).
In particular, a = (a1, . . . , ap) can be identified with a p-tuple of commuting
matrices in Mr(Fp).

Thus, we can generalise this and look for p-tuples (a1, . . . , ap) of commuting
matrices over Fp that satisfy the given equations. Note that it is necessary for
the matrices to commute in order to make sense of f(a1, . . . , ap) for a polynomial
f(x1, . . . , xp) in Z[x1, . . . , xp].

Note that it is not necessary that a commutative subring of Mr(Fp) is a field.
For example, we have the ring{(

a b
0 a

) ∣∣∣∣ a, b ∈ Fp
}
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which contains non-zero nilpotent matrices. However, Mr(Fp) is a finite ring
and so the image of ea is a finite commutative ring.

We can therefore generalise further and look at the collection X(A) of solutions
in a finite commutative ring A.

Parametric solutions

We have the well-known parametric solution:

(x, y) =
(

1− t2
1 + t2

,
2t

1 + t2

)
of the equation x2 + y2 = 1.

In terms of the above definitions, we see that X = A(x, y;x2 + y2 − 1) is an
affine scheme. We then consider the field Q(t) and observe that

a =
(

1− t2
1 + t2

,
2t

1 + t2

)
∈ X(Q(t))

There is a natural inclusion of the ring S = Z[t, w]/〈w(t2 + 1)− 1〉 in Q(t) by
sending t to itself and w to 1/(t2 + 1). Moreover, we see that a can be seen as
(w(1− t2), 2wt) in X(S).

Further observe that S = O(Y ), where Y = A(w, t;w(t2 + 1)− 1).

Composite homomorphisms and solutions

We generalise from the above example to consider two affine schemesX and Y and
a point f in X(O(Y )). As seen above this corresponds to a ring homomorphism

ef : O(X)→ O(Y )

In particular, note that the identity map O(X)→ O(X) gives a special point
iX ∈ X(O(X)).

Given any ring R, a point a in Y (R) corresponds to a ring homomorphism
ea : O(Y )→ R. We thus obtain a composite homomorphism

O(X) ef→ O(Y ) ea→ R

This composite homomorphism corresponds to a point in X(R). We thus have a
map Y (R)→ X(R) given by a 7→ b where we have the equality

eb = ea ◦ ef

Let us denote this map as f(R) : Y (R) → X(R) since it only depends on
f ∈ X(O(Y )) and R.
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Morphisms of affine schemes

What are the properties that we would want from a geometric map f : X → Y
between affine schemes?

At the very least, given an element a in X(R), we should be able to talk about
its image f(a) in Y (R). In other words, there should be an induced map
f(R) : X(R)→ Y (R).

Applying this to the element iX in X(O(X)) we see that f(iX) is an element of
Y (O(X)).

We have seen above that an element f in Y (O(X)) corresponds to a ring
homomorphism O(Y ) → O(X). Given an element a in X(R), we have seen
above that this gives, by composition an element b in Y (R).

We thus, see that it is natural to define geometric maps (morphisms) of affine
schemes as follows.

Morphism of affine schemes: A morphism f : X → Y is an O(X)-point f
of Y . In other words, f is an element of Y (O(X)).

Equivalently, we have

Mor(X,Y ) = Hom(O(Y ),O(X))

where the latter is the collection of ring homomorphisms.

Polynomial substitutions

We can also understand the above definition in more “classical” terms as follows.

Suppose X = A(x1, . . . , xp; f1, . . . , fq) and Y = A(y1, . . . , yu; g1, . . . , gv).

We can think of a polynomial map h : X → Y as one given by a u-tuple of
polynomial functions (h1(x), . . . , hu(x)) such that we can substitute yj = hj(x)
for j = 1, . . . , u to automatically satisfy gs(y) = 0 for s = 1, . . . , q, whenever
ft(x) = 0 are satisfied.

We see that this means that h corresponds to a ring homomorphism

Z[y1, . . . , yu]→ Z[x1, . . . , xp] given by yj 7→ hj(x)

Note that gs(y1, . . . , yu) 7→ gs(h1(x), . . . , hu(x)) under this homomorphism. The
previous condition is thus that the image of the ideal 〈g1, . . . , gv〉 under this ring
homomorphism is contained in the ideal 〈f1, . . . , fq〉.

It is not difficult to check that this is the same as a ring homomorphism
O(Y )→ O(X) as considered above.

9


	Affine Schemes
	Algebraic equations
	Semi-group ring
	Field of coefficients
	Algebraic and Transcendental elements.
	Application to the field of coefficients
	System of equations
	Adding new variables
	Clearing denominators
	Equations with integer coefficients

	\mathbb{Z}-affine schemes
	R-points
	Evaluation map
	Solutions in finite rings
	Parametric solutions
	Composite homomorphisms and solutions
	Morphisms of affine schemes
	Polynomial substitutions



