Affine Schemes

We wish to understand the solutions of systems of algebraic equations. To do so we must look for the most general form of such equations that we may encounter.

Algebraic equations

What is an algebraic equation?
We have a collection $\left(x_{1}, \ldots, x_{p}\right)$ of variables. We then form monomials $x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}$ where $\left(k_{1}, \ldots, k_{p}\right)$ are non-negative integers. We form terms $a_{k_{1}, \ldots, k_{p}} x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}$ where the coefficients $a_{k_{1}, \ldots, k_{p}}$ lie in some field F. We now create a polynomial

$$
f\left(x_{1}, \ldots, x_{p}\right)=\sum_{\left(0 \leq k_{i} \leq d_{i}\right)_{i=1, \ldots, p}} a_{k_{1}, \ldots, k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

as a sum of finitely many terms. Then $f\left(x_{1}, \ldots, x_{p}\right)=0$ is an algebraic equation. (Note: The coefficients are given elements of the field F, even if notationally they appear similar to variables!)

Semi-group ring

If one applies "Occam's razor" to remove inessential aspects of the notation, then one can think of a monomial as $\left(k_{1}, \ldots, k_{p}\right)$ which is an element of the semi-group \mathbb{W}^{p}, where \mathbb{W} is the collection of non-negative integers.

Note that multiplication of monomials is the same as addition in this semi-group.

$$
\left(x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}\right) \cdot\left(x_{1}^{m_{1}} \cdots x_{p}^{m_{p}}\right)=x_{1}^{k_{1}+m_{1}} \cdots x_{p}^{k_{p}+m_{p}}
$$

It follows that a polynomial is a finite linear combination of elements of this semi-group with coefficients in the field F.

This is sometimes a useful way to understand polynomials-in computer implementations as well as in algebraic geometry!

In any case, it is convenient to introduce the notation $\mathbf{k}=\left(k_{1}, \ldots, k_{p}\right)$ and

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}
$$

for a monomial; we can loosely think of this as the T-th (multi-)power of the "vector" $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$. We then define $|\mathbf{k}|=\sum_{i=1}^{p} k_{p}$ as the total degree of a monomial.
This allows us to use the compact notation $f(\mathbf{x})=\sum_{|\mathbf{k}| \leq d} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ for a polynomial with total degree at most d.

Field of coefficients

The field F contains a prime subfield \mathbb{F}, which is either a finite field \mathbb{F}_{p} of order a prime p, or the field \mathbb{Q} of rational numbers.

The polynomial f uses finitely many elements of the field F as coefficients. Hence, these coefficients lie in a finitely generated field

$$
E_{f}=\mathbb{F}\left(\left(a_{\mathbf{k}}\right)_{|\mathbf{k}| \leq d}\right)
$$

We need to see what such fields look like.

Algebraic and Transcendental elements.

Given a subfield E of a field F and an element a of F, there is a natural homomorphism $e_{a}: E[x] \rightarrow F$ which maps x to a; here $E[x]$ denotes the polynomial ring in one variable over E.

Since F is a domain, the kernel of e_{a} is a prime ideal. Thus, either it is $\{0\}$ or it is generated by a monic irreducible polynomial $x^{d}+b_{1} x^{d-1}+\cdots+b_{d}$, with b_{1}, \ldots, b_{d} in the field E.

In the first case, we say that a is transcendental over E. In this case, the above map extends to a field inclusion $E(x) \rightarrow F$; here $E(x)$ denotes the field of fractions of $E[x]$ which is the field of rational functions in one variable x over E. The image is precisely $E(a)$, the subfield of F generated by a and E. In other words, $E(x)$ and $E(a)$ are isomorphic.

In the second case, we say that a is algebraic over E. In this case, the image $E[a]$ of e_{a} is a field. Hence, $E[a]$ is the same as the subfield $E(a)$ of F generated by a over E.
Working inductively over finitely many elements a_{1}, \ldots, a_{d} of F, we see that we can re-order them so that $E\left(a_{1}, \ldots, a_{d}\right)$ is of the form $E\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{u}\right]$ where:

- b_{i} is transcendental over $E\left(b_{1}, \ldots b_{i-1}\right)$, and
- c_{j} is algebraic over $E\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

Here $b_{i}=a_{\sigma(i)}$ and $c_{j}=a_{\sigma(t+j)}$ for some permutation σ of $1, \ldots, d$.

Application to the field of coefficients

We can apply this to the field E_{f} to identify it with $\mathbb{F}\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{u}\right]$ where the b_{i} and c_{j} are the coefficients $a_{\mathbf{k}}$'s of the polynomial f re-arranged in some fashion.
For $i=1, \ldots, t$, let \mathbf{k}_{i} be the element of \mathbb{W}^{p} so that one term of $f(\mathbf{x})$ is $b_{i} \mathbf{x}^{\mathbf{k}_{i}}$. Similarly, for $j=1, \ldots, u$ let \mathbf{m}_{j} be the element of \mathbb{W}^{d} so that one term of $f(\mathbf{x})$
is $c_{j} \mathbf{x}^{\mathbf{m}_{j}}$. This, allows us to write the original polynomial equation in the more compact form

$$
f(\mathbf{x})=\sum_{i=1}^{t} b_{i} \mathbf{x}^{\mathbf{k}_{i}}+\sum_{j=1}^{u} c_{j} \mathbf{x}^{\mathbf{m}_{j}}
$$

where:

- b_{i} is transcendental over the field $\mathbf{F}\left(b_{1}, \ldots, b_{i-1}\right)$.
- c_{j} is algebraic over the field $\mathbf{F}\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

System of equations

We now consider a system of polynomial equations in the variables x_{1}, \ldots, x_{p} with coefficients in a field F.

$$
\begin{aligned}
& \sum_{\mathbf{k} \leq d_{1}} a_{1, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0 \\
& \sum_{\mathbf{k} \leq d_{2}} a_{2, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0 \\
& \vdots \\
& \sum_{\mathbf{k} \leq d_{q}} a_{q, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0
\end{aligned}
$$

The collection of all coefficients is finite. Hence the field generated by them over the prime field \mathbb{F} is finitely generated. We can now organise these coefficients as above to re-write the equations in the form:

$$
\begin{aligned}
\sum_{i=1}^{t_{1}} b_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} c_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\sum_{i=t_{1}}^{t_{2}} b_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{1}}^{u_{2}} c_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\vdots & \\
\sum_{i=t_{q-1}}^{t} b_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} c_{j} \mathbf{x}^{\mathbf{k}} & =0
\end{aligned}
$$

where:

- b_{i} is transcendental over the field $\mathbf{F}\left(b_{1}, \ldots, b_{i-1}\right)$.
- c_{j} is algebraic over the field $\mathbf{F}\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

Adding new variables

Since the b_{i} 's are transcendental over the field \mathbf{F} we can think of them as "variables". So we introduce the notation y_{i} in place of b_{i} (to remind us that these are variables!) and write our equations as:

$$
\begin{aligned}
& \sum_{i=1}^{t_{1}} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} c_{j} \mathbf{x}^{\mathbf{k}}=0 \\
& \sum_{i=t_{1}}^{t_{2}} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{1}}^{u_{2}} c_{j} \mathbf{x}^{\mathbf{k}}=0 \\
& \vdots \\
& \sum_{i=t_{q-1}}^{t} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} c_{j} \mathbf{x}^{\mathbf{k}}=0
\end{aligned}
$$

Now c_{j} satisfies an equation of the form

$$
x^{d_{j}}+g_{j, 1} x^{d_{j}-1}+\cdots+g_{j, d_{j}}=0
$$

where $g_{j, s}$ are elements of the field $\mathbf{F}\left(y_{1}, \ldots, y_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$. We can introduce additional variables z_{1}, \ldots, z_{u} in place of c_{i} 's and $a d d$ the equations

$$
z_{j}^{d_{j}}+g_{j, 1} z_{j}^{d_{j}-1}+\cdots+g_{j, d_{j}}=0
$$

to our system of equations!
However, $g_{j, s}$ are not polynomials! We now resolve that issue.

Clearing denominators

Given a polynomial equation $\sum_{|\mathbf{k}| \leq d} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}=0$ where the coefficients a_{k} are in the field F of fractions of a domain R.

It follows that $a_{\mathbf{k}}=b_{\mathbf{k}} / c_{\mathbf{k}}$ where $b_{\mathbf{k}}$ and $c_{\mathbf{k}}$ lie in R. Since there are only finitely many \mathbf{k} involved, we can replace $c_{\mathbf{k}}$ by the product of all $c_{\mathbf{k}}$'s to write $a_{\mathbf{k}}=b_{\mathbf{k}} / c$ for a common denominator c in R.

By clearing denominators, we see that the above equation is the same as the equation $\sum_{|\mathbf{k}| \leq d} b_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}=0$.
However, we need to ensure that c is invertible as well. To do so, we add another variable w and add the equation $c w-1=0$. The pair of equations

$$
c w-1=0 \text { and } \sum_{|\mathbf{k}| \leq d} b_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}=0
$$

replaces the above single equation over F with a system of equations over R.

Equations with integer coefficients

We now apply this discussion to the equations:

$$
z_{j}^{d_{j}}+g_{j, 1} z_{j}^{d_{j}-1}+\cdots+g_{j, d_{j}}=0
$$

where $g_{j, k}$ are elements of the field $\mathbf{F}\left(y_{1}, \ldots, y_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.
By clearing denominators, we can replace these by pairs of equations of the form

$$
h_{i, 0} w_{j}-1=0 \text { and } h_{j, 0} z_{j}^{d_{j}}+h_{j, 1} z_{j}^{d_{j}-1}+\cdots+h_{j, d_{j}}=0
$$

where $h_{j, k}$ are elements of the $\operatorname{ring} \mathbf{F}\left[y_{1}, \ldots, y_{t}\right]\left[c_{1}, \ldots, c_{j-1}\right]$ such that $g_{j, k}=$ $h_{j, k} / h_{j, 0}$.
Note that this equation is satisfied by c_{j}.
For each r and s, let $f_{r, s}$ denote the polynomial obtained by replacing c_{j} by z_{j} in the polynomial $h_{r, s}$.

So we $a d d$ the above equations with b_{i} replaced by new variables y_{i}, and c_{j} replaced by z_{i} to obtain a combined system:

$$
\begin{aligned}
\sum_{i=1}^{t_{1}} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} z_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\sum_{i=t_{1}}^{t_{2}} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{1}}^{u_{2}} z_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\vdots & \\
\sum_{i=t_{q-1}}^{t} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} z_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
f_{1,0} z_{1}^{d_{1}}+f_{1,1} z_{1}^{d_{1}-1}+\cdots+f_{1, d_{1}} & =0 \text { and } f_{1,0} w_{1}-1=0 \\
f_{2,0} z_{2}^{d_{2}}+f_{2,1} z_{2}^{d_{2}-1}+\cdots+f_{2, d_{2}} & =0 \text { and } f_{2,0} w_{2}-1=0 \\
\vdots & \\
f_{t, 0} z_{u}^{d_{u}}+f_{u, 1} z_{u}^{d_{u}-1}+\cdots+f_{u, d_{u}} & =0 \text { and } f_{2, u} w_{u}-1=0
\end{aligned}
$$

where the variables are the x 's, y 's and z 's. This entire system of equations has coefficients in the prime field \mathbb{F}.

In fact, if the prime field in \mathbb{Q}, then we can even assume that the coefficients are in the ring of integers \mathbb{Z} by clearing denominators.

Similarly, equations with coefficients in the field \mathbb{F}_{p} can be seen as equations with integer coefficients, by "lifting" the elements of \mathbb{F}_{p} to integers. In order to ensure that we only look at "integers $\bmod p$ " we can add the equation $p=0$!

In summary, the most general system of equations that we want to solve is of the form

$$
\left(\sum_{|\mathbf{k}| \leq d} a_{i, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0\right)_{i=1, \ldots, q}
$$

where the coefficients $a_{i, \mathbf{k}}$ are integers.
(Perhaps this explains why number theory plays such an important role in algebraic geometry!)

\mathbb{Z}-affine schemes

\mathbb{Z}-affine scheme: A \mathbb{Z}-affine scheme is of the form $A\left(x_{1}, \ldots, x_{p} ; f_{1}, \cdots, f_{q}\right)$ where f_{1}, \ldots, f_{q} are polynomials in the variables x_{1}, \ldots, x_{p} with coefficients in the ring \mathbb{Z} of integers.
Note that the $A()$ notation is a symbol to denote that we are looking at the affine scheme associated with this system of equations. So far this "definition" is therefore just an introduction of notation!

Since the variables x_{i} are "dummy" variables which can be eliminated by using the semi-group ring of monomials, we see that such a system of equations is determined by the coefficients. This is a collection of integers indexed by a finite subset of $\cup_{p \geq 0}\left(\mathbb{N} \times \mathbb{W}^{p}\right)$. As a consequence, there are only countably many \mathbb{Z}-affine schemes.

Note that, in the definition, we could have used any commutative ring R in place of \mathbb{Z} to get a definition of R-affine schemes. (Moreover one could allow for infinitely many equations in that case.)

R-points

Given a polynomial $f\left(x_{1}, \ldots, x_{p}\right)$ with integer coefficients and elements a_{1}, \ldots, a_{p} of a commutative ring R, we can evaluate $f\left(a_{1}, \ldots, a_{p}\right)$ to see whether it is 0 .
Given a \mathbb{Z}-affine scheme $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ and a commutative ring R, we define

$$
X(R)=\left\{\left(a_{1}, \ldots, a_{p}\right) \mid f_{1}\left(a_{1}, \ldots, a_{p}\right)=\cdots=f_{q}\left(a_{1}, \ldots, a_{p}\right)=0\right\}
$$

Such a solution in R is also called an R-point of X. This means $X(R)$ is the collection of R-points of X.

Note that it is necessary for R to be commutative in order to make sense of $f\left(a_{1}, \ldots, a_{r}\right)$.

Evaluation map

Given a commutative ring R, and elements a_{1}, \ldots, a_{p} in R, the evaluation of polynomials at $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ is the same as a ring homomorphism:

$$
e_{\mathbf{a}}: \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right] \rightarrow R \text { such that } x_{i} \mapsto a_{i} \text { for } i=1, \ldots, p
$$

The condition $f\left(a_{1}, \ldots, a_{p}\right)=0$ becomes $e_{\mathbf{a}}\left(f\left(x_{1}, \ldots, x_{p}\right)\right)=0$.
It follows that $X(R)$ consists of $\left(a_{1}, \ldots, a_{p}\right)$ such that $f_{i}\left(x_{1}, \ldots, x_{p}\right)$ lie in the kernel of $e_{\mathbf{a}}$ for $i=1, \ldots, q$. In other words,

$$
X(R)=\left\{\left(a_{1}, \ldots, a_{p}\right) \mid f_{i} \in \operatorname{ker}\left(e_{\mathbf{a}}\right) \text { for } i=1, \ldots, q\right\}
$$

Note that $\operatorname{ker}\left(e_{\mathbf{a}}\right)$ is an ideal in $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$. If $\left\langle f_{1}, \ldots, f_{q}\right\rangle$ denotes the ideal in $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$ generated by f_{1}, \ldots, f_{q}, then we see that the above condition on \mathbf{a} becomes $\left\langle f_{1}, \ldots, f_{q}\right\rangle \subset \operatorname{ker}\left(e_{\mathbf{a}}\right)$. Now, Noether's isomorphism theorem says that

$$
X(R)=\operatorname{Hom}\left(\frac{\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]}{\left\langle f_{1}, \ldots, f_{q}\right\rangle}, R\right)
$$

where Hom indicates ring homomorphisms. It is thus natural to introduce the ring:

$$
\mathcal{O}(X)=\frac{\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]}{\left\langle f_{1}, \ldots, f_{q}\right\rangle}
$$

which is naturally associated with the affine scheme $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$. We then get

$$
X(R)=\operatorname{Hom}(\mathcal{O}(X), R)
$$

in terms of ring homomorphisms.

Solutions in finite rings

One important example of the above is when the commutative ring is taken to be a finite field \mathbb{F}_{q}.
Now \mathbb{F}_{q} is an r-dimensional vector space over \mathbb{F}_{p} for the prime p such that $q=p^{r}$. It follows that \mathbb{F}_{q} can be identified as a sub-ring of the matrix ring $M_{r}\left(\mathbb{F}_{p}\right)$. In particular, $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ can be identified with a p-tuple of commuting matrices in $M_{r}\left(\mathbb{F}_{p}\right)$.

Thus, we can generalise this and look for p-tuples $\left(a_{1}, \ldots, a_{p}\right)$ of commuting matrices over \mathbb{F}_{p} that satisfy the given equations. Note that it is necessary for the matrices to commute in order to make sense of $f\left(a_{1}, \ldots, a_{p}\right)$ for a polynomial $f\left(x_{1}, \ldots, x_{p}\right)$ in $\mathbb{Z}\left[x_{1}, \ldots, x_{p}\right]$.
Note that it is not necessary that a commutative subring of $M_{r}\left(\mathbb{F}_{p}\right)$ is a field. For example, we have the ring

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) \right\rvert\, a, b \in \mathbb{F}_{p}\right\}
$$

which contains non-zero nilpotent matrices. However, $M_{r}\left(\mathbb{F}_{p}\right)$ is a finite ring and so the image of $e_{\mathbf{a}}$ is a finite commutative ring.

We can therefore generalise further and look at the collection $X(A)$ of solutions in a finite commutative ring A.

Parametric solutions

We have the well-known parametric solution:

$$
(x, y)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)
$$

of the equation $x^{2}+y^{2}=1$.
In terms of the above definitions, we see that $X=A\left(x, y ; x^{2}+y^{2}-1\right)$ is an affine scheme. We then consider the field $\mathbb{Q}(t)$ and observe that

$$
\mathbf{a}=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right) \in X(\mathbb{Q}(t))
$$

There is a natural inclusion of the ring $S=\mathbb{Z}[t, w] /\left\langle w\left(t^{2}+1\right)-1\right\rangle$ in $\mathbb{Q}(t)$ by sending t to itself and w to $1 /\left(t^{2}+1\right)$. Moreover, we see that a can be seen as $\left(w\left(1-t^{2}\right), 2 w t\right)$ in $X(S)$.
Further observe that $S=\mathcal{O}(Y)$, where $Y=A\left(w, t ; w\left(t^{2}+1\right)-1\right)$.

Composite homomorphisms and solutions

We generalise from the above example to consider two affine schemes X and Y and a point \mathbf{f} in $X(\mathcal{O}(Y))$. As seen above this corresponds to a ring homomorphism

$$
e_{\mathbf{f}}: \mathcal{O}(X) \rightarrow \mathcal{O}(Y)
$$

In particular, note that the identity map $\mathcal{O}(X) \rightarrow \mathcal{O}(X)$ gives a special point $i_{X} \in X(\mathcal{O}(X))$.
Given any ring R, a point a in $Y(R)$ corresponds to a ring homomorphism $e_{\mathbf{a}}: \mathcal{O}(Y) \rightarrow R$. We thus obtain a composite homomorphism

$$
\mathcal{O}(X) \xrightarrow{e_{7}} \mathcal{O}(Y) \xrightarrow{e_{\text {a }}} R
$$

This composite homomorphism corresponds to a point in $X(R)$. We thus have a map $Y(R) \rightarrow X(R)$ given by $\mathbf{a} \mapsto \mathbf{b}$ where we have the equality

$$
e_{\mathbf{b}}=e_{\mathbf{a}} \circ e_{\mathbf{f}}
$$

Let us denote this map as $\mathbf{f}(R): Y(R) \rightarrow X(R)$ since it only depends on $\mathbf{f} \in X(\mathcal{O}(Y))$ and R.

Morphisms of affine schemes

What are the properties that we would want from a geometric map $f: X \rightarrow Y$ between affine schemes?

At the very least, given an element a in $X(R)$, we should be able to talk about its image $f(\mathbf{a})$ in $Y(R)$. In other words, there should be an induced map $f(R): X(R) \rightarrow Y(R)$.
Applying this to the element i_{X} in $X(\mathcal{O}(X))$ we see that $f\left(i_{X}\right)$ is an element of $Y(\mathcal{O}(X))$.
We have seen above that an element \mathbf{f} in $Y(\mathcal{O}(X))$ corresponds to a ring homomorphism $\mathcal{O}(Y) \rightarrow \mathcal{O}(X)$. Given an element a in $X(R)$, we have seen above that this gives, by composition an element \mathbf{b} in $Y(R)$.

We thus, see that it is natural to define geometric maps (morphisms) of affine schemes as follows.

Morphism of affine schemes: A morphism $f: X \rightarrow Y$ is an $\mathcal{O}(X)$-point f of Y. In other words, f is an element of $Y(\mathcal{O}(X))$.

Equivalently, we have

$$
\operatorname{Mor}(X, Y)=\operatorname{Hom}(\mathcal{O}(Y), \mathcal{O}(X))
$$

where the latter is the collection of ring homomorphisms.

Polynomial substitutions

We can also understand the above definition in more "classical" terms as follows.
Suppose $X=A\left(x_{1}, \ldots, x_{p} ; f_{1}, \ldots, f_{q}\right)$ and $Y=A\left(y_{1}, \ldots, y_{u} ; g_{1}, \ldots, g_{v}\right)$.
We can think of a polynomial map $h: X \rightarrow Y$ as one given by a u-tuple of polynomial functions $\left(h_{1}(\mathbf{x}), \ldots, h_{u}(\mathbf{x})\right)$ such that we can substitute $y_{j}=h_{j}(\mathbf{x})$ for $j=1, \ldots, u$ to automatically satisfy $g_{s}(\mathbf{y})=0$ for $s=1, \ldots, q$, whenever $f_{t}(\mathbf{x})=0$ are satisfied.

We see that this means that h corresponds to a ring homomorphism

$$
\mathbb{Z}\left[y_{1}, \ldots, y_{u}\right] \rightarrow \mathbb{Z}\left[x_{1}, \ldots, x_{p}\right] \text { given by } y_{j} \mapsto h_{j}(\mathbf{x})
$$

Note that $g_{s}\left(y_{1}, \ldots, y_{u}\right) \mapsto g_{s}\left(h_{1}(\mathbf{x}), \ldots, h_{u}(\mathbf{x})\right)$ under this homomorphism. The previous condition is thus that the image of the ideal $\left\langle g_{1}, \ldots, g_{v}\right\rangle$ under this ring homomorphism is contained in the ideal $\left\langle f_{1}, \ldots, f_{q}\right\rangle$.

It is not difficult to check that this is the same as a ring homomorphism $\mathcal{O}(Y) \rightarrow \mathcal{O}(X)$ as considered above.

