Examples of equation coefficients

We look at some examples to see how coefficients of equations can be "turned into variables".
$x^{2}+\sqrt{2} y^{2}=1$
We introduce a new variable z and use the system of equations

$$
\begin{aligned}
x^{2}+z y^{2}-1 & =0 \\
z^{2} & =2
\end{aligned}
$$

Note that this also has the solutions where $z=-\sqrt{2}$.
However, algebraically there is no distinction between these two solutions!
$x^{3}+\pi y^{2}=1$
We know that π is transcendental. So we can treat it as a new variable z and there is only one equation

$$
x^{3}+z y^{2}-1=0
$$

Note that this also has the solutions where $z=e$ (or some other transcendental number).

Again, algebraically there is no distinction between e and π !
Note that there are many solutions to this system of equations. All we can say is that the solutions to the original equation are contained in the solutions here for a specific value of z.
$\pi x^{2}+\sqrt{\pi+2 e} y^{2}+e z^{2}=1$
We introduce the variable u (respectively v) in place of π (respectively e). Note that we do not know that π and e are algebraically independent, so we just assume it! We also introduce w which satisfies the equation $w^{2}=\pi+2 e$. We then have the system of equations

$$
\begin{aligned}
u x^{2}+w y^{2}+v z^{2}-1 & =0 \\
w^{2}-u-2 v & =0
\end{aligned}
$$

Note that there are many solutions to this system of equations.All we can say is that the solutions to the original equation are contained in the solutions here for specific values of u, v, w.
$\frac{\pi}{e^{2}+1} x^{2}+\pi e y^{2}=1$
We introduce the variable u (respectively v) in place of π (respectively e). We also introduce the variable w which satisfies $w\left(e^{2}+1\right)=1$. We have the system of equations

$$
\begin{array}{r}
w u x^{2}+u v y^{2}-1=0 \\
w\left(v^{2}+1\right)-1=0
\end{array}
$$

$x^{2} / 2+y^{2} / 3=1$
We introduce variables u and v that satisfy $2 u=1$ and $3 v=1$. The system of equations

$$
\begin{array}{r}
u x^{2}+v y^{2}-1=0 \\
2 u-1=0 \\
3 v-1=0
\end{array}
$$

contains all solutions to our original system of equations.
$x^{2}+y^{2}=1$ over \mathbb{F}_{5}.
We add the equation $5=0$! The system of equations

$$
\begin{aligned}
x^{2}+y^{2}-1 & =0 \\
5 & =0
\end{aligned}
$$

contains all solutions to our original system of equations.

