Systems of Algebraic Equations
 MTH437 - Introduction to Schemes

Kapil Hari Paranjape

IISER Mohali
9th September 2021

Recall

Finding configurations of linear subspaces in projective space that have certain kinds of incidence corresponds to solving "systems of algebraic equations".

What are systems of algebraic equations?
To begin with let us try to understand a single algebraic equation.

Polynomials

We start with a collection $\left(x_{1}, \ldots, x_{p}\right)$ of variables.
We then form monomials $x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}$ where $\left(k_{1}, \ldots, k_{p}\right)$ are non-negative integers.
We form terms $a_{k_{1}, \ldots, k_{p}} x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}$ where the coefficients $a_{k_{1}, \ldots, k_{p}}$ lie in some field F.

We now create a polynomial as a sum of finitely many terms:

$$
f\left(x_{1}, \ldots, x_{p}\right)=\sum_{\left(0 \leq k_{i} \leq d_{i}\right)_{i=1, \ldots, p}} a_{k_{1}, \ldots, k_{p}} x_{1}^{k_{1}} \ldots x_{p}^{k_{p}}
$$

An algebraic equation is of the form $f\left(x_{1}, \ldots, x_{p}\right)=0$.
The coefficients are given elements of the field F, even if notationally they appear similar to variables!

Semi-group ring

Applying "Occam's razor" to remove unnecessary notation, a monomial is just $\left(k_{1}, \ldots, k_{p}\right)$ which is an element of \mathbb{W}^{p}, where \mathbb{W} is the collection of non-negative integers.

Note that multiplication of monomials is the same as addition in \mathbb{W}^{p} as a semi-group.

$$
\left(x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}\right) \cdot\left(x_{1}^{m_{1}} \cdots x_{p}^{m_{p}}\right)=x_{1}^{k_{1}+m_{1}} \cdots x_{p}^{k_{p}+m_{p}}
$$

It follows that a polynomial is a finite linear combination of elements of this semi-group with coefficients in the field F.

This is sometimes a useful way to understand polynomials-in computer implementations as well as in algebraic geometry!

Compact notation

In any case, it is convenient to introduce the notation $\mathbf{k}=\left(k_{1}, \ldots, k_{p}\right)$ and

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdots x_{p}^{k_{p}}
$$

for a monomial.
We note that $\mathbf{x}^{\mathbf{k}} \cdot \mathbf{x}^{\mathbf{m}}=\mathbf{x}^{\mathbf{k}+\boldsymbol{m}}$.
We then define $|\mathbf{k}|=\sum_{i=1}^{p} k_{p}$ as the total degree of this monomial.
We now have the compact notation $f(\mathbf{x})=\sum_{|\mathbf{k}| \leq d} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ for a polynomial with total degree at most d.

Coefficients

The field F contains a prime subfield \mathbb{F}, which is either a finite field \mathbb{F}_{p} of order a prime p, or the field \mathbb{Q} of rational numbers.

The polynomial f uses finitely many elements of the field F as coefficients.
Hence, these coefficients lie in a finitely generated field

$$
E_{f}=\mathbb{F}\left(\left(a_{\mathbf{k}}\right)_{|\mathbf{k}| \leq d}\right)
$$

Claim: By introducing more variables and more equations, we can reduce to the case when the coefficients lie in the prime field \mathbb{F}, or even \mathbb{Z}, the ring of integers.

Algebraic and Transcendental elements.

Given a subfield E of a field F and an element a of F, there is a natural homomorphism $e_{a}: E[x] \rightarrow F$ which maps x to a; here $E[x]$ denotes the polynomial ring in one variable over E.

Since F is a domain, the kernel of e_{a} is a prime ideal.
Thus, there are two cases:

- Either the kernel of e_{a} is $\{0\}$, or
- The kernel of e_{a} is generated by a monic irreducible polynomial $x^{d}+b_{1} x^{d-1}+\cdots+b_{d}$, with b_{1}, \ldots, b_{d} in the field E.

Transcendental case

In the first case, we say that a is transcendental over E.
In this case, the above map extends to a field inclusion $E(x) \rightarrow F$; here $E(x)$ denotes the field of fractions of $E[x]$ which is the field of rational functions in one variable x over E.

The image is precisely $E(a)$, the subfield of F generated by a and E. In other words, $E(x)$ and $E(a)$ are isomorphic.

Algebraic Case

In the second case, we say that a is algebraic over E.
In this case, the image $E[a]$ of e_{a} is a field.
Hence, $E[a]$ is the same as the subfield $E(a)$ of F generated by a over E.

General case

Working inductively over finitely many elements a_{1}, \ldots, a_{d} of F, we see that we can re-order them so that $E\left(a_{1}, \ldots, a_{d}\right)$ is of the form $E\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{u}\right]$ where:

- b_{i} is transcendental over $E\left(b_{1}, \ldots b_{i-1}\right)$, and
- c_{j} is algebraic over $E\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

Here $b_{i}=a_{\sigma(i)}$ and $c_{j}=a_{\sigma(t+j)}$ for some permutation σ of $1, \ldots, d$.

Re-writing a polynomial

We apply this to the coefficients $\left(a_{\mathbf{k}}\right)_{|\mathbf{k}| \leq d}$ that occur on our polynomial There is a re-arrangement of this into a b_{1}, \ldots, b_{t} and c_{1}, \ldots, c_{u}.

- For each $i=1, \ldots, t$ there is a \mathbf{k}_{i} in \mathbb{W}^{p} so that $b_{i}=a_{\mathbf{k}_{\mathbf{i}}}$.
- For each $j=1, \ldots, u$ there is a \mathbf{m}_{j} in $\mathbb{W}^{\wedge} p \$$ so that $c_{j}=a_{\mathbf{m}_{j}}$.

This, allows us to write the original polynomial equation in the more compact form

$$
f(\mathbf{x})=\sum_{i=1}^{t} b_{i} \mathbf{x}^{\mathbf{k}_{i}}+\sum_{j=1}^{u} c_{j} \mathbf{x}^{\mathbf{m}_{j}}
$$

where:

- b_{i} is transcendental over the field $\mathbf{F}\left(b_{1}, \ldots, b_{i-1}\right)$.
- c_{j} is algebraic over the field $\mathbf{F}\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

System of equations

We now apply the above discussion to a system of equations.

$$
\begin{aligned}
& \sum_{\mathbf{k} \leq d_{1}} a_{1, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0 \\
& \vdots \\
& \sum_{\mathbf{k} \leq d_{q}} a_{q, \mathbf{k}} \mathbf{x}^{\mathbf{k}}=0
\end{aligned}
$$

There are finitely many coefficients a's which lie in the field F.

As above we organise these coefficients to re-write the equations:

$$
\begin{aligned}
\sum_{i=1}^{t_{1}} b_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} c_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\vdots & \\
\sum_{i=t_{q-1}}^{t} b_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} c_{j} \mathbf{x}^{\mathbf{k}} & =0
\end{aligned}
$$

where:

- b_{i} is transcendental over the field $\mathbf{F}\left(b_{1}, \ldots, b_{i-1}\right)$.
- c_{j} is algebraic over the field $\mathbf{F}\left(b_{1}, \ldots, b_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.

Adding new variables

Since the b_{i} 's are transcendental over the field \mathbf{F} we can think of them as "variables".

So we introduce the notation y_{i} in place of b_{i} (to remind us that these are variables!) and write our equations as:

$$
\begin{aligned}
\sum_{i=1}^{t_{1}} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} c_{j} \mathbf{x}^{\mathbf{k}} & =0 \\
\vdots & \\
\sum_{i=t_{q-1}}^{t} y_{i} \mathbf{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} c_{j} \mathbf{x}^{\mathbf{k}} & =0
\end{aligned}
$$

Now c_{j} satisfies an equation of the form

$$
x^{d_{j}}+g_{j, 1} x^{d_{j}-1}+\cdots+g_{j, d_{j}}=0
$$

where $g_{j, s}$ are elements of the field $\mathbf{F}\left(y_{1}, \ldots, y_{t}\right)\left[c_{1}, \ldots, c_{j-1}\right]$.
We can introduce additional variables z_{1}, \ldots, z_{u} in place of c_{i} 's and add the equations

$$
z_{j}^{d_{j}}+g_{j, 1} z_{j}^{d_{j}-1}+\cdots+g_{j, d_{j}}=0
$$

to our system of equations!
However, $g_{j, s}$ are rational functions of y_{1}, \ldots, y_{t}.

However, there are finitely many coefficients. So we can clear denominators!

$$
h_{j, 0} z_{j}^{d_{j}}+h_{j, 1} z_{j}^{d_{j}-1}+\cdots+h_{j, d_{j}}=0
$$

where $h_{j, s}$ are in the ring $\mathbb{F}\left[y_{1}, \ldots, y_{t}\right]\left[c_{1}, \ldots, c_{j-1}\right]$.
Here we have, $g_{j, s}=h_{j, s} / h_{j, 0}$. So we need need $h_{j, 0}$ to be invertible.
To do so, we introduce a new variable w_{j} and add the equation $w_{j} h_{i, 0}-1=0$.

This gives us the combined system of equations:

$$
\begin{aligned}
\sum_{i=1}^{t_{1}} y_{i} \mathrm{x}^{\mathbf{k}}+\sum_{j=1}^{u_{1}} z_{j} \mathrm{x}^{\mathbf{k}} & =0 \\
\vdots & \\
\sum_{i=t_{q-1}}^{t} y_{i} \mathrm{x}^{\mathbf{k}}+\sum_{j=u_{q-1}}^{u} z_{j} \mathrm{x}^{\mathbf{k}} & =0 \\
h_{1,0} z_{1}^{d_{1}}+h_{1,1} z_{1}^{d_{1}-1}+\cdots+h_{1, d_{1}} & =0 \text { and } h_{1,0} w_{1}-1=0 \\
\vdots & \\
h_{t, 0} z_{u}^{d_{u}}+h_{u, 1} z_{u}^{d_{u}-1}+\cdots+h_{u, d_{u}} & =0 \text { and } h_{2, u} w_{u}-1=0
\end{aligned}
$$

all of which have coefficients in the prime field \mathbb{F}. Here w's, x 's, y 's and z 's are variables.

Conclusion

In summary, we can reduce to a system of polynomial equations in the variables x_{1}, \ldots, x_{p} with coefficients in the prime field \mathbb{F}.

$$
\left(\sum_{\mathbf{k} \leq d_{1}} a_{1, \mathbf{k}} \mathrm{x}^{\mathbf{k}}=0\right)_{i=1, \ldots, q}
$$

In fact, if the prime field in \mathbb{Q}, then we can even assume that the coefficients are in the ring of integers \mathbb{Z} by clearing denominators as above.

Similarly, equations with coefficients in the field \mathbb{F}_{p} can be seen as equations with integer coefficients, by "lifting" the elements of \mathbb{F}_{p} to integers!

We can add the somewhat strange equation $p=0$ to ensure that integers are only considered modulo p.

Affine schemes

Z-affine scheme: A Z-affine scheme is of the form $A\left(x_{1}, \ldots, x_{p} ; f_{1}, \cdots, f_{q}\right)$ where f_{1}, \ldots, f_{q} are polynomials in the variables x_{1}, \ldots, x_{p} with coefficients in the ring of integers.

Note that the $A()$ notation is a symbol to denote that we are looking at the affine scheme associated with this system of equations.

So far this "definition" is therefore just an introduction of notation!
Observe also that there are countably many affine schemes since the x_{i} 's are "dummy" variables.

